• Title/Summary/Keyword: vehicle driving characteristics

Search Result 543, Processing Time 0.021 seconds

Development of the Driving path Estimation Algorithm for Adaptive Cruise Control System and Advanced Emergency Braking System Using Multi-sensor Fusion (ACC/AEBS 시스템용 센서퓨전을 통한 주행경로 추정 알고리즘)

  • Lee, Dongwoo;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.28-33
    • /
    • 2011
  • This paper presents driving path estimation algorithm for adaptive cruise control system and advanced emergency braking system using multi-sensor fusion. Through data collection, yaw rate filtering based road curvature and vision sensor road curvature characteristics are analyzed. Yaw rate filtering based road curvature and vision sensor road curvature are fused into the one curvature by weighting factor which are considering characteristics of each curvature data. The proposed driving path estimation algorithm has been investigated via simulation performed on a vehicle package Carsim and Matlab/Simulink. It has been shown via simulation that the proposed driving path estimation algorithm improves primary target detection rate.

Prediction of Tractive Performance of Off-Road Wheeled Vehicles (로외에서 운용되는 휠형차량의 견인성능 예측)

  • 박원엽;이규승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.188-195
    • /
    • 2000
  • This study was conducted to develop the mathematical model and the computer simulation program(TPPMWV) for predicting the tractive performance of off-road wheeled vehicles operated on various soil conditions. The model takes into account main design parameters of a wheeled vehicle, including the radius and width of front and rear tires, the weight of vehicle, wheelbase and driving type(4WD, 2WD). Soil characteristics, such as the peressure-sinkage and shearing characteristics and the response to repetitive loading, are also taken into consideration. The effectiveness of the developed model was verified by comparing the predicted drawbar pulls using TPPMWV with measured ones obtained by field tests for two different driving types of wheeled vehicle. As a results, the drawbar pulls predicted by the TPPMWV were well matched to the measured ones within the absolute errors of 5.25%(4WD) AND 9.42%(2WD)for two different driving types, respectively.

  • PDF

A Study on the Dynamic Characteristics of the Bi-modal Tram with All-Wheel-Steering System (전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구)

  • Lee, Soo-Ho;Moon, Kyung-Ho;Jeon, Young-Ho;Lee, Jung-Shik;Kim, Duk-Gie;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.444-450
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

A Study on the Emission Characteristics of Korean Light-duty Vehicles in Real-road Driving Conditions (국내 소형자동차의 실제 도로 주행 배출가스 특성에 관한 연구)

  • Park, Junhong;Lee, Jongtae;Kim, Sunmoon;Kim, Jeongsoo;Ahn, Keunwhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.123-134
    • /
    • 2013
  • Strengthening vehicle emission regulation is one of important policies to improve air quality in urban area. Due to the limitation of specified driving cycles for certification test to reflect real driving conditions, additional off-cycle emission regulations have been adopted in US and being developed in Europe. The driving cycles of US or Europe have been used in emission certification for Korean light-duty vehicles, but it has not been known how well the driving cycles reflect various real driving patterns in Korea. In that point of view, it is required to estimate vehicle emission based on real road driving conditions to raise the effectiveness of vehicle emission regulation in Korea. In this study, real driving emission measurements have been conducted for three Korean light-duty vehicles with PEMS. The driving routes consisted of urban, rural and motorway in Seoul and Incheon. The data have been analyzed with various averaging methods including moving averaging windows method and compared to emission limits set with emission certification modes applied to tested vehicles. The results have shown that the real driving pollutant emissions of a gasoline and a LPG vehicles have been ranged quite lower than those of emission limits on CVS-75 driving cycle. But real driving NOx of a light duty diesel vehicle has been considerably higher than emission limit of NEDC driving cycle. The higher than expected NOx emission of a diesel vehicle might be caused by different strategy to control EGR in real driving condition from NEDC driving.

Vibration Analysis of Vehicle Seat Depending on Driving Condition (주행조건에 따른 자동차 시트 진동특성 연구)

  • Kang, Jae-Young;Kim, Key-Sun;Choi, Seok-Min;Choi, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.110-115
    • /
    • 2010
  • This paper studies the vibration characteristics of a vehicle seat on several driving conditions. Modal test for a vehicle seat is conducted for the three different boundary conditions: on the rigid jig, BIW and the full vehicle. In driving on various road conditions and speeds, vibration level is measured at several locations including seat mounting and seat-back. The vibration pattern for each driving condition is found where the suspension mode and the 1st bending and torsion modes of the seat make the major contribution on it.

A Study on the Comparison of Emission Characteristics of In-Use Urban Bus by Test Modes (국내에서 운영중인 시내버스의 시험모드에 따른 배출특성 비교 연구)

  • Jeon, Sang-Woo;Eom, Myoung-Do;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.4
    • /
    • pp.403-411
    • /
    • 2010
  • Recently, emission tests for heavy-duty vehicles have been conducted by heavy-duty engine dynamometer. But, it contains weaknesses that present inconveniences to install and uninstall engines and limitations to reflect on practical characteristics for vehicle driving. On the other hand, chassis dynamometer test is able to differentiate characteristics of real driving patterns due to the reason that vehicles can be examined by utilizing chassis dynamometer. This study aimed at comparing the characteristic of emitting regulatory substances of urban buses on Heavy-duty chassis dynamometer. The characteristic was analyzed based on vehicle speed by using both domestic and overseas developed heavy-duty vehicle test modes. As a result, this work attempted to investigate possibilities to take advantage of Heavy-duty vehicle test modes as a method to manage emissions from heavy-duty vehicles.

Characteristics of Exhaust Emissions from a Heavy-duty Diesel Engine (대형디젤엔진의 오염물질 배출특성)

  • 엄명도;류정호;이종태;임철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.20-27
    • /
    • 1999
  • The proportion of diesel vehicle is very high in this country . PM and NOx emitted from diesel-posered vehicle is severely ;affecting to be air quality . Especially, diesel particulate matters(DPM) including black smoke are hazardous air pollutants to human health and environment. In order to reduce the exhaust emissions from diesel engines, it is necessary to analyze the characteristics of exhaust emissions from diesel engines in various driving conditions. Recently, there are occasion to increase the fuel consumption rate to engine power up. So, in this study we have tested a diesel engine detached from in use -diesel vehicle and analyzed exhaust emission by driving condition and fuel dispersion rate. From this results, we will prepare the comprehensive management plan for exhaust emissions from diesel vehicles and contribute to the improvement of air pollution in urban area.

  • PDF

Prdiction of Tractive Performance of Wheeled Vehicles on Soft Terrains (휠형차량의 연약지 견인성능 예측)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.359-368
    • /
    • 2000
  • In this paper, mathematical model was developed for predicting the tractive performance of off-road wheeled vehicles operated on soft terrains. Based on the mathematical model, a computer simulation program(TPPMWV) was developed. The model takes into account main design parameters of wheeled vehicle, including radius and width of front and rear tire, weight of vehicle, wheelbase and driving type(4WD, 2WD). Soil characteristics, such as the peressure-sinkage and shearing characteristics and the response to repetitive loading and slip-sinkage effect, are also taken into consideration. The effectiveness of the developed model was verified by comparing the predicted drawbar pulls using TPPMWV with measured ones obtained by field tests for two different driving types of wheeled vehicle. As a results, the drawbar pulls predicted by the TPPMWV were well matched to the measured ones within the absolute errors of 3.916%(4WD) and 13.31%(2WD) for two different driving types, respectively.

  • PDF

Proactive Autonomous Emergency Braking System for the Elderly Driver (고령운전자를 위한 자동긴급제동시스템 기술 개발)

  • Donghoon Shin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.14-19
    • /
    • 2024
  • This paper describes autonomous emergency braking systems (AEB) for elderly drivers designed to consider their driving characteristics. With aging, perception-reaction time, and decision-making time increase accordingly. Without being aware of these performance degradations, however, changes in driving patterns due to increased alertness while driving lead to vehicle crashes. Therefore, it is necessary to develop an autonomous emergency braking system by incorporating the characteristics of the elderly driver. In order to enhance the driver acceptance of older people, perception-reaction time, alertness, and ride comfort need to be considered for conventional autonomous emergency braking systems (C-AEB). Proactive AEB(P-AEB) algorithm has been proposed to reflect human factor of elderly driver above. The performance of the proposed algorithm has been evaluated through MATLAB simulink simulation studies. It has been shown from the computer simulations that the proposed P-AEB algorithm enhances the driver acceptance of older people by improving ride comfort while ensuring safety of vehicle.

A STUDY ON THE MODEL-MATCHING CONTROL IN THE LONGITUDINAL AUTONOMOUS DRIVING SYSTEM

  • Kwon, S.J.;Fujioka, T.;Omae, M.;Cho, K.Y.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.135-144
    • /
    • 2004
  • In this paper, the model-matching control in the longitudinal autonomous driving system is investigated by vehicle dynamics simulation, which contains nonlinear subcomponents and simplified subcomponents. The design of the robust model-matching controller is performed by the characteristics of the 2 degrees of freedom controller, which is composed of the feedforward compensator and the feedback compensator. It makes the characteristics of tractive and brake force to be equivalent to the specific transfer function, which is suggested as the reference model. Mathematical models of vehicle dynamic analysis including the model-matching control are constructed for computer simulation. Then, simple examples on open-loop simulation without any controller and closed loop simulation with the model-matching controller are applied to check the validity of the robust controller. As the practical example, the autonomous driving system in the longitudinal direction is adopted. It is proved that the model-matching control is effective and adequate to the disturbances and the perturbations, which are shown in the responses of the change of a vehicle mass and a road gradient.