• Title/Summary/Keyword: vehicle defect

Search Result 96, Processing Time 0.023 seconds

A Study on the Safety Improvement of Structural Weakness Using Accident Analysis for Vehicle-Mounted MEWP (차량탑재형 고소작업대의 재해분석을 통한 취약 구조부의 안전성 향상 방안에 관한 연구)

  • Yoo, Yong-tae;Seo, Su-eun;You, Hee-Jae;Kang, Kyung-sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.15-25
    • /
    • 2017
  • The findings were summarized as follows. The safety check by manufacturer showed that 6 of 13 companies are over the average occurrence of defects. It was expected that there would be a difference between manufacturing technology capability and production system of each manufacturer. Consequently, manufacturers should institutionally improve and strengthen certification items for the upward standardization of safety certification before factory. Second, the safety check by year showed that the results of this study accord with those of previous studies on defect time. Consequently, manufacturers should classify the 3-year-old equipment for vehicle-mounted MEWP into a special check subject to do a nondestructive test according to proven results, and also reflect the test in a safety test system to do regular preventive activities of equipment defects. Third, the safety check by part showed that the boom and outrigger parts of vehicle-mounted MEWP have the most defects. Stress concentration resulted in defects as the boom part was most frequently operated in the structural parts for a real work. To prevent this, it is suitable to improve the hardness of boom materials. The outrigger part needs improvement in safety devices with materials. As an outrigger supports the overturning moment of equipment, it is most affected by its load based on the operating radius, resulting in fatigue crack.

Successful Management of a Comatose Patient with Traumatic Brain Exposure with a Fronto-Parieto-Occipital Flap

  • Maduba, Charles Chidiebele;Nnadozie, Ugochukwu Uzodimma
    • Journal of Trauma and Injury
    • /
    • v.33 no.1
    • /
    • pp.48-52
    • /
    • 2020
  • Composite skull defects in patients with severe head injuries are very challenging to manage. The dilemma when deciding whether to perform a definitive reconstruction is how long to wait for physiological recovery before an intervention complicates the situation. The inability of such patients to tolerate prolonged anesthetic exposure is a driving factor for performing the minimal intervention necessary to facilitate recovery. Herein, we present a case involving the successful immediate reconstructive treatment of a severely head-injured adolescent with a composite scalp defect secondary to trauma. A 14-year-old boy sustained a severe head injury from a motor vehicle accident with a composite scalp defect in the right fronto-parietal region. The frontal lobe was exposed, and the right eye was crushed and devitalized. The patient was deeply unconscious for 3 days, without any significant improvements before reconstructive surgery was proposed due to fear of possible meningitis resulting from the exposure of brain structures. We successfully managed the patient with a fronto-parieto-occipital flap, after which the patient promptly recovered consciousness.

Development of Internal Defect Detector of Automotive Transmission Parts Using Eddy Current (와전류를 이용한 자동차 변속기 부품의 내부결함 검출기 개발)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.513-518
    • /
    • 2019
  • The non-destructive testing equipment using an eddy current was developed to check for defect in the vehicle transmission component. A defect master sample was made to test all types of defects that occur in the component and also an eddy current detector was manufactured and used to test and detect all kinds of defects. In addition, testing was held against the actual defective items to investigate the cause and type of defects, and a comparative study was conducted based on results from the examination. The software system of the eddy current detector was developed so that even a non-specialist can make assessment of detect in the component from the test results displayed on the monitor.

A Study on the Battery Cell Defect Analysis Method Using the GAN Model (GAN 모델을 이용한 배터리 셀 불량 분석 기법에 관한 연구)

  • Kim, Jeyeon;Park, Hangyu;Yoon, Hyesu;Kang, Seongkyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.168-169
    • /
    • 2022
  • As the electric vehicle market has grown rapidly, the battery market has grown exponentially. Due to the gap between the generation speed of quality control technology and battery mass production speed for batteries mounted on electric vehicles, many durability problems have arisen for batteries. Most accidents are caused by electrical factors, but there is no technology to quickly inspect them. In this paper, we are going to propose a quick analysis of battery cell defects using the GAN model.

  • PDF

Safety diagnosis process for deteriorated buildings using a 3D scan-based reverse engineering model

  • Jae-Min Lee;Seungho Kim;Sangyong Kim
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.79-88
    • /
    • 2023
  • As the number of deteriorated buildings increases, the importance of safety diagnosis, maintenance, and the repair of buildings also increases. Traditionally, building condition assessments are performed by one person or one company and various inspections are needed. This entails a subjective judgment by the inspector, resulting in different assessment results, poor objectivity and a lack of reliability. Therefore, this study proposed a method to bring about accurate grading results of building conditions. The limitations of visual inspection and condition assessment processes previously conducted were identified by reviewing existing studies. Building defect data was collected using the reverse-engineered three-dimensional (3D) model. The accuracy of the results was verified by comparing them with the actual evaluation results. The results show a 50% time-saving to the same area with an accuracy of approximately 90%. Consequently, defect data with high objectivity and reliability were acquired by measuring the length, area, and width. In addition, the proposed method can improve the efficiency of the building diagnosis process.

Fuzzy Algorithm Development for the Integration of Vehicle Simulator with All Terrain Unmanned Vehicle (험로 주행용 무인차량과 차량 시뮬레이터의 융합을 위한 퍼지 알고리즘 개발)

  • Yun, Duk-Sun;Yu, Hwan-Sin;Lim, Ha-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.47-57
    • /
    • 2005
  • In this research, the main theme is the system integration of driving simulator and unmanned vehicle. The total system is composed of the mater system and the slave system. The master system has a cockpit system and the driving simulator. The slave system means an unmanned vehicle, which is composed of the actuator system the sensory system and the vision system. The communication system is composed of RS-232C serial communication system which combines the master system with the slave system. To integrate both systems, the signal classification and system characteristics considered DSP(Digital Signal Processing) filter is designed with signal sampling and measurement theory. In addition, to simulate the motion of tele-operated unmanned vehicle on the driving simulator, the classical washout algorithm is applied to this filter, because the unmanned vehicle does not have a limited working space, while the driving simulator has a narrow working space and it is difficult to cover all the motion of the unmanned vehicle. Because the classical washout algorithm has a defect of fixed high pass later, fuzzy logic is applied to reimburse it through an adaptive filter and scale factor for realistic motion generation on the driving simulator.

  • PDF

Analysis for Traffic Accident of the Bus with Advanced Driver Assistance System (ADAS) (첨단안전장치 장착 버스의 사고사례 분석)

  • Park, Jongjin;Choi, Youngsoo;Park, Jeongman
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.78-85
    • /
    • 2021
  • Recently a traffic accident of heavy duty vehicles under the mandatory installation of ADAS (Advanced Driver Assistance System) is often reported in the media. Heavy duty vehicle accidents are normally occurring a high number of passenger's injury. According to report of Insurance Institute for Highway Safety, FCW (Forward Collision Warning) and AEB (Automatic Emergency Braking) were associated with a statistically significant 12% reduction in the rate of police-reportable crashes per vehicle miles traveled, and a significant 41% reduction in the rear-end crash rate of large trucks. Also many countries around the world, including Korea, are studying the effects of ADAS installation on accident reduction. Traffic accident statistics of passenger vehicle for business purpose in TMACS (Traffic safety information Management Complex System in Korea) tends to remarkably reduce the number of deaths due to the accident (2017(211), 2018(170), 2019(139)), but the number of traffic accidents (2017(8,939), 2018(9,181), 2019(10,095)) increases. In this paper, it is introduced a traffic accident case that could lead to high injury traffic accidents by being equipped with AEB in a bus. AEB reduces accidents and damage in general but malfunction of AEB could occur severe accident. Therefore, proper education is required to use AEB system, simply instead of focusing on developing and installing AEB to prevent traffic accidents. Traffic accident of AEB equipped vehicle may arise a new dispute between a driver's fault and vehicle defect. It is highly recommended to regulate an advanced event data recorder system.

A Case Study on Quality Improvement of Electric Vehicle Hairpin Winding Motor Using Deep Learning AI Solution (딥러닝 AI 솔루션을 활용한 전기자동차 헤어핀 권선 모터의 용접 품질향상에 관한 사례연구)

  • Lee, Seungzoon;Sim, Jinsup;Choi, Jeongil
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.283-296
    • /
    • 2023
  • Purpose: The purpose of this study is to actually implement and verify whether welding defects can be detected in real time by utilizing deep learning AI solutions in the welding process of electric vehicle hairpin winding motors. Methods: AI's function and technological elements using synthetic neural network were applied to existing electric vehicle hairpin winding motor laser welding process by making special hardware for detecting electric vehicle hairpin motor laser welding defect. Results: As a result of the test applied to the welding process of the electric vehicle hairpin winding motor, it was confirmed that defects in the welding part were detected in real time. The accuracy of detection of welds was achieved at 0.99 based on mAP@95, and the accuracy of detection of defective parts was 1.18 based on FB-Score 1.5, which fell short of the target, so it will be supplemented by introducing additional lighting and camera settings and enhancement techniques in the future. Conclusion: This study is significant in that it improves the welding quality of hairpin winding motors of electric vehicles by applying domestic artificial intelligence solutions to laser welding operations of hairpin winding motors of electric vehicles. Defects of a manufacturing line can be corrected immediately through automatic welding inspection after laser welding of an electric vehicle hairpin winding motor, thus reducing waste throughput caused by welding failure in the final stage, reducing input costs and increasing product production.

Design and Implementation of a Data-Driven Defect and Linearity Assessment Monitoring System for Electric Power Steering (전동식 파워 스티어링을 위한 데이터 기반 결함 및 선형성 평가 모니터링 시스템의 설계 구현)

  • Lawal Alabe Wale;Kimleang Kea;Youngsun Han;Tea-Kyung Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.61-69
    • /
    • 2023
  • In recent years, due to heightened environmental awareness, Electric Power Steering (EPS) has been increasingly adopted as the steering control unit in manufactured vehicles. This has had numerous benefits, such as improved steering power, elimination of hydraulic hose leaks and reduced fuel consumption. However, for EPS systems to respond to actions, sensors must be employed; this means that the consistency of the sensor's linear variation is integral to the stability of the steering response. To ensure quality control, a reliable method for detecting defects and assessing linearity is required to assess the sensitivity of the EPS sensor to changes in the internal design characters. This paper proposes a data-driven defect and linearity assessment monitoring system, which can be used to analyze EPS component defects and linearity based on vehicle speed interval division. The approach is validated experimentally using data collected from an EPS test jig and is further enhanced by the inclusion of a Graphical User Interface (GUI). Based on the design, the developed system effectively performs defect detection with an accuracy of 0.99 percent and obtains a linearity assessment score at varying vehicle speeds.

Comparison of map display styles of vehicle navigation system on human factors (차량 항법장치의 화면표시형태에 대한 인간공학적 비교)

  • Jung, Beom-Jin;Baek, Seung-Ryul;Kim, Gi-Beom;Park, Beom
    • Proceedings of the ESK Conference
    • /
    • 1995.10a
    • /
    • pp.208-213
    • /
    • 1995
  • The vehicle navigation system is developed for helping driver to retrieve driving information more easily and lastly. Navigation System informs driver many pieces of driving information - roadway structure and system, on-line traffic condition, the position of vehicle, route guidance, destination and other infor- mation service. As the style of information is diverse and the amount of information is large, driver may have mental and visual overload. The display of information can disturb the driver's attention and this can cause accidents. This state is caused by the defect of human-machine interactions. When the navigation system is designed, human factors - cognitive, judgment, operating -must be considered. The display style must be designed simply and easily, not to be obstacle of human - machine interface. In this study, outside- in view display style and inside-out view display style are compared each other. Tow factors are measured. One is cognitive factor-time of cognition on information that is displayed by screen display, cognition error rate. The other is image of screen display - subject's feeling about several styles of display, degree of subject's preference. The prototype of roadway is four kinds -Cross, T-cross and O-cross. Roadway display for test is taken from paper maps. Traffic condition display style, vehicle position display style and route guidance display style are taken from current display style. Traffic condition display style is symbol. vehicle position display style and route guidance display style are described as color and symbol. The test on screen display is implemented doing given tasks. Then the test is analyzed statistically. The result of test analysis gives the guideline to the designer for the map display of the vehicle navigation system.

  • PDF