• Title/Summary/Keyword: vehicle crash

Search Result 407, Processing Time 0.02 seconds

Development of a Finite Element Model for Frontal Crash Analysis of a Mid-Size Truck (중형 트럭의 정면 충돌 특성해석을 위한 유한요소 모델의 개발)

  • 홍창섭;오재윤;이대창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • This paper develops a finite element model for studying the crashworthiness analysis of a mid-size truck. A simulation for a truck frontal crash to a rigid barrier using the model is performed with PAM-CRASH installed in super computer SP2. Full vehicle model is composed of 86467 shell elements, 165 beam elements and 98 bar elements, and 86769 nodes. The model uses four material model such as elastic, elastic-plastic(steel), rigid and elastic-plastic(rubber) material model which are in PAM-CRASH. Frame and suspension system are modeled with 28774 shell elements and 31412 nodes. Cab is modeled with 34680 shell elements and 57 beam elements, and 36254 nodes. Bumper is modeled with 2262 shell elements, and 2508 nodes. Axle, steering shaft, etc are modeled using beam or bar elements. Mounting parts are modeled using rigid bodies. Bodies are interconnected using nodal constrains or joint options. To verify the developed model, frontal crash test with 30mph velocity to a rigid barrier is carried out. In the crash test, vehicle pulse at lower part of b-pillar is measured, and deformed shapes of frame and driver seat area are photographed. Those measured vehicle pulse and photographed pictures are compared those from the simulation to verify the developed finite element model.

  • PDF

Crash FE Analysis of Front Side Assembly of Passenger Cars for Management of Collapse Shape Via Variation of Thickness with Reverse Engineering (승용차용 프론트 사이드 조립체의 박판 두께 조정에 따른 붕괴모드 제어에 관한 역설계적 유한요소 층돌해석)

  • Kim, Yong-Woo;Kim, Jeong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.106-113
    • /
    • 2008
  • The goal of crashworthiness is an optimized vehicle structure that can absorb the crash energy by controlled vehicle deformations while maintaining adequate space so that the residual crash energy can be managed by the restraint systems to minimize crash loads transfer to the vehicle occupants. Front side assembly is one of the most important energy absorbing components in relating to the crashworthiness design of vehicle. The structure and shape of the front side assemblies are different depending on auto-makers and size of vehicles. Thus, it is not easy to grab an insight on designer's intention when you glance at a new front side member without experiences. In this paper, we have performed the explicit nonlinear dynamic finite element analysis on the front side assembly of a passenger car to investigate the effect of thickness distribution of the front side assembly on the collapse shape, which is important in the aspect of controlling deformation to maintain adequate space, from the viewpoint of reverse engineering. To do this, we have performed crash FE analysis for the assembly by varying the thickness distribution of the assembly.

A Development on the Prediction Model for the HIC15 using USNCAP Frontal Impact Test Results (USNCAP 정면충돌시험 결과를 이용한 HIC15 예측모델 개발)

  • Lim, Jaemoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.31-38
    • /
    • 2020
  • This study is to develop the prediction model for the HIC15 in frontal vehicle crash tests. The 28 frontal impact test results of the MY2019 and MY2020 USNCAP are utilized. The metrics for evaluating the crash pulse severity such as moving average acceleration, Restraint Quotient (RQ) and ride-down efficiency are reviewed to find out whether the metrics can predict the HIC15. It is observed that the R2 values based on the linear regression of all pairs between the existing metrics and the occupant injuries such as the HIC15, 3 ms chest g's and chest deflection are very low. In this study, using the vehicle crash pulses, the linear regression model for estimating the HIC15 is developed. The vehicle crash pulse is splitted seven 10 ms intervals in 70 ms after impact for extracting the average accelerations in each intervals. The prediction model can predict effectively not only the HIC15 but also the maximum head g's, chest deflection and 3 ms chest g's of 13 vehicles out of 28 vehicles.

A study on the estimation of impact velocity of crashed vehicles in tunnel using computer simulation(PC-CRASH) (컴퓨터 시뮬레이션(PC-CRASH)을 이용한 터널 내 피추돌 차량의 충돌 속도 추정에 관한 연구)

  • Han, Chang-Pyoung;Choi, Hong-Ju
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.40-45
    • /
    • 2020
  • In a vehicle-to-vehicle accident, the impact posture, braking status, final stopping position, collision point and collision speed are important factors for accident reconstruction. In particular, the speed of collision is the most important issue. In this study, the collision speed and the final stopping position in the tunnel were estimated using PC-CRASH, a vehicle crash analysis program used for traffic accident analysis, and the final stopping position of the simulation and the final stopping position of the traffic accident report were compared. When the Pride speed was 0km/h or 30km/h and the Sorento speed was 100m/h, the simulation results and reports matched the final stopping positions and posture of the two vehicles. As a result of the simulation, it can be estimated that Pride was collided in an almost stationary state.

Utilization of Rigid Barrier to Simulate Car to Car Crash of Two Identical Vehicles (고정벽을 활용한 차대차 경사충돌 재현)

  • Junsuk, Bae;Ho, Kim;Young Myoung, So
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.21-26
    • /
    • 2022
  • Commercial use of autonomous vehicles is to come soon. So far most of responsibility of the accident is on the human driver with conventional vehicles whereas that will be on the car OEM and transportation related organizations with autonomous vehicles, which asks car OEM's and government to do vast study of car crash in various conditions. Test protocols need amendment and to be newly enacted to reflect new findings from the study aforementioned. Rigid stationary barrier and moving or stationary deformable barrier as well as car to car test which is same as actual accident can be utilized to simulate the crash happening on the road. Among those 3 test methods, rigid stationary barrier is most economic and has good repeatability. Limitation as well as advantage of the rigid stationary barrier is studied through comparison between car to car crash and oblique rigid barrier crash.

A Study on the HIC15 Estimating Model Using Frontal Crash Pulses (정면충돌 가속도곡선을 이용한 HIC15 예측모델에 관한 고찰)

  • Ha, Tae-Woong;Lim, Jaemoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.62-67
    • /
    • 2022
  • This study is to construct the simple estimating model for the HIC15 of the driver dummy using the frontal impact test results. Test results of 9 vehicles of Hyundai Sonata from the MY2002~MY2020 USNCAP are utilized for constructing the linear regression model. The average accelerations extracted from the vehicle crash pulses are handled as the main factors. The average accelerations of 10 ms interval within 0~100 ms are calculated from the crash pulse data of 9 vehicles. The present estimating model of the HIC15 using the average accelerations of 10 ms interval in the 0~80 ms range shows good agreement with the tested value within 2.4% maximum error.

Car-to-Car Offset Frontal Impact Modeling using Spring-Mass Model (Spring-Mass 모델을 이용한 차대차 부분정면충돌 모델링)

  • Lim, Jaemoon;Lee, Kwangwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2016
  • The objective of this study was to construct the spring-mass models for the car-to-car offset frontal impact crash. The SISAME software was utilized to extract the spring-mass models using the data from the offset frontal crash test. The spring-mass model of the passenger car could effectively approximate the crash characteristics for the offset frontal barrier impact and the car-to-car offset frontal impact scenarios.

A Study of Symmetry in Speed of Two Identical Vehicles in a Frontal Oblique Crash (동일 차량간 충돌 시 차량간 속도 대칭성 연구)

  • Myeonggyu, An;Ho, Kim;Young Myung, So
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.100-105
    • /
    • 2022
  • Oblique car to car frontal impact is quite common on the road and series of studies have been done to realize this in the lab. At a certain angle of oblique crash a car (ego) is to travel at a speed of xkm/h to hit the other car(traffic) which is approaching to ego at a speed of ykm/h. Symmetry of the speed of two vehicles, x vs. y, is studied with respect to the impulse of the ego vehicle as well as occupant injury. If there is symmetry of speed of two vehicles, number of case studies needed to analyze the oblique frontal impact may decrease: ex. in the case of 30degree oblique crash 40km/h (ego) / 80km/h (traffic) will show the similar behavior as 80km/h (ego) / 40km/h (traffic) crash.

A study on development of the pole side impact sled test using WorldSID (WorldSID를 이용한 기둥측면 충돌 슬레드 시험 개발 방법 연구)

  • Oh, Hyungjooon;Kim, Seungki;Lim, Kyungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.5-10
    • /
    • 2013
  • The pole side crash caused fatal injury by comparison with other crash impact mode such as frontal and rear crash. EuroNCAP proposed the pole side crash test using WorldSID(World Side Impact Dummy). The objective of this study is to develop the pole side impact sled test using dummy rib deflection between crash and sled test. In the pursuit of this purpose, we fabricated new pole side sled buck and test preliminary pole sled using ES-2re. Through this, we found the sled acceleration pulse scale. Hardness and thickness of the EPP affects the rib deflection. We conducted the pole sled test using WorldSID based on the preliminary results. As a result, rib deflection was shown to correlate well between crash test and pole side sled test.

Research on Aggressivity of Light Truck Vehicle and SUV to Passenger Vehicle (승용차량에 대한 경트럭 및 SUV의 공격성 연구)

  • Kim, Guan-Hee;Park, In-Song
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.133-139
    • /
    • 2009
  • When two cars impact each other, it is usually known smaller vehicle's passenger likely to be more seriously injured than bigger one's. Generally it is known that SUVs and Light Truck Vehicles (LTVs) are bigger and heavier than passenger vehicles and their drive height such as bumper rail and side member, and front end stiffness are higher than those of passenger vehicles. Because of these characteristics the occupants of passenger vehicle struck by SUVs or LTVs are more likely to experience severe injury or fatal injury. To evaluate SUV and LTV's aggressivity to passenger vehicle, SUV to passenger vehicle and LTV to passenger vehicle head-on crash test have been carried out. And finally the way how to reduce incompatibility between SUV and LTV and passenger vehicles is suggested.