• 제목/요약/키워드: vehicle battery

검색결과 713건 처리시간 0.028초

전기자동차용 Ni/MH Battery의 자기방전율 평가를 위한 컴퓨터 시뮬레이션의 활용 (The Use of Computer Simulation in the Selfdischarge Evaluation of Ni/MH Battery for Electric Vehicle)

  • 정도양;김명규;박성용;김선욱
    • 전기화학회지
    • /
    • 제4권2호
    • /
    • pp.53-57
    • /
    • 2001
  • 전기자동차 운용시 빈번히 발생되는 차량의 주정차기간에 축전지는 자기방전을 일으켜 용량의 손실이 발생하게 된다. 따라서 전기자동차의 잔존용량을 정확히 측정하기 위해서는 자기방전에 의한 용량손실을 고려하여야 한다. 이 논문에서는 전기자동차 운용시 빈번히 발생할 것으로 예상되는 주정차기간에 대해 포괄적으로 적용할 수 있는 Ni/MH Battery의 자기방전율을 나타내는 일반식을 전산모사 방법 중 하나인 실험계획법을 이용하여 구하였으며 이를 시험데이터와 비교하였다. 실험계획법을 위한 온도영역으로는 전기자동차가 운용되는 $-20\~30^{\circ}C$의 온도구간을 선정하였으며, 축전지의 방치시간으로는 자기방전이 상대적으로 크게 일어나며 빈번히 발생할 것으로 예상되는 영역인 1일$\~$15일 범위를 선택하였다. 이와 같은 방법으로 실험계획법에 의해 구해진 축전지 자기방전율에 대한 일반식의 타당성을 검증하기 위해 축전지에 대한 자기방전시험을 수행하여 비교하였으며, 그 결과 실험계획법으로 예측한 축전지의 자기방전율은 시험데이터와 우수한 일치를 나타내었다.

Study of electric vehicle battery reliability improvement

  • Ismail, A.;Jung, W.;Ariffin, M.F.;Noor, S.A.
    • International Journal of Reliability and Applications
    • /
    • 제12권2호
    • /
    • pp.123-129
    • /
    • 2011
  • Due to restriction of vehicle emissions and high demand for fossil fuels nowadays, car manufacturers around the world are looking into alternative ways in introducing new car model that would vastly captured the market. Thus, Electric Vehicle (EV) has been further developed to take the advantage of the current global issues on price of fossil fuels and impact on the environment. Since car battery plays the crucial role on the overall performance of EV, many researchers have been working on improving the component. This paper focused on the reliability of EV battery which involves recognizing failure types, testing method and life prediction method. By focusing on these elements, the reliability feature being identified and as a result the batteries life will be prolonged.

  • PDF

전기자동차 배터리 안정성 확보를 위한 냉각장치 열특성 연구 (A Study on the Thermal Characteristics of Cooling System for Securing Battery Stability in Electric Vehicle)

  • ;고광수;박윤철
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.7-12
    • /
    • 2020
  • The battery of an electric vehicle is a key part of the energy supply to operate the vehicles. There are many factors affecting battery life such as charging method, discharge rate, and ambient temperature those are requires systematic monitoring and management. To solve the issues like environmental problems and fuel consumption reduction the battery needs more performance improvement. In this study, it was analyzed the thermal characteristics and securing battery stability for electric vehicle battery cooling system. The simulation test was operated using GT-suite software with several conditions like cooling capacity 1, 2 and 4 kW, cooling flow rate 5, 10, 20 and 30 LPM, and battery initial temperatures 40, 35, and 30℃ at the temperature of ambient 25℃. The results shown that the case of cooling flow rate at 20 LPM was most efficient among all above conditions.

테슬라(TESLA) 전기자동차 핵심 기술동향 (The Core Technical Trends of TESLA EV(Electric Vehicle) Motors)

  • 배진용
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.64-65
    • /
    • 2017
  • This paper review the core technical trends of TESAL EV(Electric Vehicle) Motors. The object of this study analyzes electric vehicle's body appearance, motor cooling system, battery arrangement, battery management system (BMS), and super charging station etc.

  • PDF

연료전지-태양전지 하이브리드 자동차에 대한 제어전략 및 특성평가 (Control Strategy and Characteristic Analysis of PEMFC/Photovoltaics Hybrid Vehicle)

  • 안효정;지현진;배중면;차석원
    • 대한기계학회논문집B
    • /
    • 제31권10호
    • /
    • pp.840-847
    • /
    • 2007
  • This Paper focuses on modeling and simulation to analyze the characteristic of hybrid vehicle. The system includes a proton exchange membrane fuel cell(PEMFC), photovoltaic generator(PV), lead-acid battery, motor, vehicle and controller. Main electricity is produced by the PEMFC and battery to meet the requirements of a user load. When vehicle is parked in a sunny place, extra power is generated by the photovotaics and is charged in a battery for next drive. Further we evaluate usefulness of this hybrid vehicle by using ADVISOR - the advanced vehicle simulator written in the Matlab/Simulink environment. According to simulation results, the extra power obtained by photovoltaics which have been explored in nature conditions can help to reduce the electrical load of PEMFC and increase the efficiency (over 21 %).

울트라케페시터와 배터리를 보조 에너지원으로 사용하는 하이브리드 자동차의 다이나믹 프로그래밍을 이용한 최적 연비 계산 (Fuel Economy of Ultracapacitor & Battery Hybrid vehicle Using Dynamic Programing)

  • 전유광;박영일;이장무
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.537-540
    • /
    • 2005
  • A battery is the primary energy source device presently used in hybrid electric vehicle. It can store much energy, but cannot provide enough current without inefficient units. However, an ultracapcitor can provide much current, but cannot store much energy. It will have better fuel economy by combining the two energy sources in parallel. The purpose of this paper is making the simulator of the two HEV systems. The one has only battery, the other have battery and ultarcapacitor in parallel. To compare the fuel economy, dynamic programing was used for optimization and prius was used for HEV model.

  • PDF

도심주행 패턴에 따른 소형 전기자동차 최적화 전략 (Optimized Strategy of Neighborhood Electric Vehicle with Driving Schedules)

  • 길범수;조종표;표영덕;김강출
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.53-59
    • /
    • 2010
  • The Developing & Producing of Eco-Friendly vehicle have been more incremented, as People appreciate the importance of Earth Environment Conservation. The needs of Neighborhood Electric Vehicle(NEV) that suits Current people's short drive distance is incremented. In this Paper, we define Neighborhood Electric Vehicle through out National Highway Traffic Safety Administration of United States of America's regulation and explain motor and battery of primary constituents of that. We used MATLAB and ADVISOR 200 programs for Simulation, and propsed NEV's Model that tow people can be got in. In this Model, the battery is Lead-acid battery(72V, 85Ah) and the motor is 8kW permanent magnet synchronous motor(PM motor). We compared change of driving range of NEV through out non-changing speed Driving(10km/h, 20km/h, 30km/h, 40km/h) and Manhattan driving schedule.

Tilt-rotor 항공기 동력계통 중량 추정에 대한 상쇄연구 (Trade-off Study of Propulsion Systems Weight Estimation for Tilt-rotor Personal Air Vehicle)

  • 이정훈
    • 항공우주시스템공학회지
    • /
    • 제8권4호
    • /
    • pp.1-6
    • /
    • 2014
  • This paper presents the trade-off study of conducting a survey of the weights for various kind of propulsion systems installed in the Smart Unmanned Aerial Vehicle TR-100, a tilt-rotor vehicle, which is developed by Korea Aerospace Research Institute, in order to predict the appropriate propulsion system for present and future Personal Air Vehicle, which has single mode and vertical take-off & landing. In order to perform the trade-off study, we set the requirements that the vehicle hovers for 1 hour with 1,000 kg maximum take off weights. In this study, the power systems are classified engine, which uses the fossil fuel - turboshaft engine, piston engine, diesel engine and rotary engine, and electric motor with fuelcell or Li-Ion battery. The results of trade-off study shows the power systems using fossil fuel are superior to using fuelcell or Li-Ion battery for weight of propulsion system. Also turboshaft engine is the best power system for the aspects of system weight, and the nexts are rotary engine, piston engine, diesel engine, electric motor with Li-Ion battery, and electric motor with fuelcell.

전기자동차와 충전기반시설의 V2G 기술 활용과 영향에 관한 연구 (Applications and Impact of V2G Technology for Electric Vehicle and Charging Infrastructure)

  • 이성욱;박병주
    • 문화기술의 융합
    • /
    • 제5권2호
    • /
    • pp.367-373
    • /
    • 2019
  • 급격한 전기자동차의 증가에 따라 전기자동차의 배터리를 주행 목적이 아닌 다른 용도로 사용하려는 Vehicle-to-Grid (V2G) 기술 또한 산업계와 학계부터 큰 관심을 끌고 있다. V2G 기술의 도움으로 전기자동차의 배터리는 스마트 그리드 환경에서 에너지 저장장치, 전력공급원등의 여러 중요한 역할로의 사용이 가능해 진다. 본고 에서는 거주용 주택환경을 위한 기술인 Vehicle-to-Home(V2H), 상업용 건물을 위한 기술인 Vehicle-to-Building(V2B) 그리고 전체 전력망을 위한 기술인 Vehicle-to-Grid(V2G) 기술에 대해 자세히 알아보고 각 기술의 특성과 영향에 대해 검토한다. 또한 이 기술들의 경제적 영향에 대해서도 분석한다.