• 제목/요약/키워드: vehicle authentication

Search Result 96, Processing Time 0.018 seconds

Vulnerability Case Analysis of Wireless Moving Vehicle (무선이동체의 취약점 사례 분석)

  • Oh, Sangyun;Hong, Jinkeun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.41-46
    • /
    • 2018
  • As the industry related to drones has been activated, the public interest in drones has increased explosively, and many cases of drone-using are increasing. In the case of military drones, the security problem is the level of defense of the aircraft or cruise missiles, but commercial small and low cost drones are often released and utilized without security count-measure. This makes it possible for an attacker to easily gain access to the root of the drones, access internal files, or send fake packets. However, this droning problem can lead to another dangerous attack. In this regard, this paper has identified the vulnerabilities inherent in the commercial drones by analyzing the attack cases in the communication process of the specific drones. In this paper, we analyze and test the vulnerability in terms of scanning attack, meson attack, authentication revocation attack, packet stop command attack, packet retransmission attack, signal manipulation and de-compile attack. This study is useful for the analysis of drones attack and vulnerability.

Performance Evaluation of WAVE Communication System for the Next-Generation ITS (차세대 ITS를 위한 WAVE 통신 시스템 성능 평가)

  • Lee, Se-Yeun;Jeong, Han-Gyun;Shin, Dae-Kyo;Lim, Ki-Taeg;Lee, Myung-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1059-1067
    • /
    • 2011
  • Next-Generation ITS environment requires high-speed data packet transmission, security, authentication, and hand-over supportable for driving vehicle on road by installing RSEs and OBUs. Therefore, wireless communication technology for next-generation ITS services are advancing to 200km/h maximum speed supportable, 1km communication radius, minimum 10Mbps hish-speed datarate for multimedia data(such as text, images, movie clips and so on) supportable, high reliability. In this paper, we implemented WAVE communication system which based on IEEE 802.11p PHY/MAC and evaluated that the system meets next-generation ITS environments.

Performance Evaluation of Motorcycle's Anti-theft Device using NFC Authentication and Solenoid Valve (NFC 보안인증과 솔레노이드 밸브를 이용한 이륜차 이동제한장치 성능평가)

  • Moon, Boram;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.82-86
    • /
    • 2016
  • This paper proposes a method for the immobilization of motorbike brakes in conjunction with near-field communication (NFC) technology in order to meet the increasing demand for security and convenience of motorbike drivers. We thought about the concept of wireless key, NFC security devices and automatic solenoid valve for setting the lock and unlock module. This paper propose the design and development of an innovative anti-theft alarm system for motorcycles using NFC smart devices based on RFID system, the basis of IoT and AES(advanced encryption standard) encryption Algorithm. The design concept is based on NFC communication strategy between the vehicle and owner. To do this concept, we designed motorcycle smart key system with general-purpose NFC system and the automatic solenoid valve for setting the lock and unlock module. First, we designed control unit and NFC card reader for motorcycle smart key system. Then we propose an AES encryption algorithm and prove that the motorcycle key system is controllable by showing the result of implementing and testing, after installing.

A Study of a Secure Smart Car System using Attribute-based Delegation Method (속성 기반 권한위임 관리 기법을 사용한 스마트 자동차 안전성 검토에 관한 연구)

  • Kim, Jin-Mook;Moon, Jeong-Kyung;Hwang, Deuk-Young
    • Convergence Security Journal
    • /
    • v.19 no.3
    • /
    • pp.71-79
    • /
    • 2019
  • The demand of smart cars is increasing rapidly. International stand organize such as 3GPP and 5GAA are proposing standard communication protocvols for connected-car, and automotive network infrastructure. But Smart car network have many security threats and more dangerous against the existed wire communication network. Typically, peripheral devices of a smart car may disguise their identity and steal location information and personal information about the vehicle. In addition, the infrastructure elements around smart cars can conspire and put driving cars in danger, threatening lives. This is a very serious security threat. Therefore, in order to solve these problems, we proposed a system that is secure from collusion and tampering attacks using attribute-based authorize delegation method and threshold encryption algorithms. We have demonstrated using a semantic safety model that the proposed system can be safe from collusion attack.

An analysis on invasion threat and a study on countermeasures for Smart Car (스마트카 정보보안 침해위협 분석 및 대응방안 연구)

  • Lee, Myong-Yeal;Park, Jae-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.374-380
    • /
    • 2017
  • The Internet of Things (IoT) refers to intelligent technologies and services that connect all things to the internet so they can interactively communicate with people, other things, and other systems. The development of the IoT environment accompanies advances in network protocols applicable to more lightweight and intelligent sensors, and lightweight and diverse environments. The development of those elemental technologies is promoting the rapid progress in smart car environments that provide safety features and user convenience. These developments in smart car services will bring a positive effect, but can also lead to a catastrophe for a person's life if security issues with the services are not resolved. Although smart cars have various features with different types of communications functions to control the vehicles under the existing platforms, insecure features and functions may bring various security threats, such as bypassing authentication, malfunctions through illegitimate control of the vehicle via data forgery, and leaking of private information. In this paper, we look at types of smart car services in the IoT, deriving the security threats from smart car services based on various scenarios, suggesting countermeasures against them, and we finally propose a safe smart car application plan.

Security Credential Management & Pilot Policy of U.S. Government in Intelligent Transport Environment (지능형 교통 환경에서 미국정부의 보안인증관리 & Pilot 정책)

  • Hong, Jin-Keun
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.13-19
    • /
    • 2019
  • This paper analyzed the SCMS and pilot policy, which is pursued by the U.S. government in connected vehicles. SCMS ensures authentication, integrity, privacy and interoperability. The SCMS Support Committee of U.S. government has established the National Unit SCMS and is responsible for system-wide control. Of course, it introduces security policy, procedures and training programs making. In this paper, the need for SCMS to be applied to C-ITS was discussed. The structure of the SCMS was analyzed and the U.S. government's filot policy for connected vehicles was discussed. The discussion of the need for SCMS highlighted the importance of the role and responsibilities of SCMS between vehicles and vehicles. The security certificate management system looked at the structure and analyzed the type of certificate used in the vehicle or road side unit (RSU). The functions and characteristics of the certificates were reviewed. In addition, the functions of basic safety messages were analyzed with consideration of the detection and warning functions of abnormal behavior in SCMS. Finally, the status of the pilot project for connected vehicles currently being pursued by the U.S. government was analyzed. In addition to the environment used for the test, the relevant messages were also discussed. We also looked at some of the issues that arise in the course of the pilot project.