Browse > Article
http://dx.doi.org/10.15207/JKCS.2018.9.8.041

Vulnerability Case Analysis of Wireless Moving Vehicle  

Oh, Sangyun (Division of Infocom Communication, Baekseok University)
Hong, Jinkeun (Division of Infocom Communication, Baekseok University)
Publication Information
Journal of the Korea Convergence Society / v.9, no.8, 2018 , pp. 41-46 More about this Journal
Abstract
As the industry related to drones has been activated, the public interest in drones has increased explosively, and many cases of drone-using are increasing. In the case of military drones, the security problem is the level of defense of the aircraft or cruise missiles, but commercial small and low cost drones are often released and utilized without security count-measure. This makes it possible for an attacker to easily gain access to the root of the drones, access internal files, or send fake packets. However, this droning problem can lead to another dangerous attack. In this regard, this paper has identified the vulnerabilities inherent in the commercial drones by analyzing the attack cases in the communication process of the specific drones. In this paper, we analyze and test the vulnerability in terms of scanning attack, meson attack, authentication revocation attack, packet stop command attack, packet retransmission attack, signal manipulation and de-compile attack. This study is useful for the analysis of drones attack and vulnerability.
Keywords
Wireless; Drone; Hijacking; Vulnerability; Security;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 P. T. Jardine, S. Givigi, A. Noureldin. (2015). Incorporating feedback predications for optimized UAV attack mission planning, 23rd Mediterranean Conference on Control and Automation (MED);740-746. DOI: 10.1109/MED.2015.7158834
2 S. H. Rubin, W. K. Grefe, T. B. Tebibel, S. C. Chen, M. L. Shyu, K. S. Simonsen. (2017). Cyber Secure UAV Communications using heuristically inferred stochastic grammars and hard real time adaptive waveform synthesis and evolution, IEEE Computer society 2017, 9-15, DOI: http://doi.ieeecomputersociety.org/10.1109/IRI.2017.56
3 Y. Su. Jung & Y. H. Yon. (2018). User Privacy protection model though enhancing the administrator role in the cloud environment, Journal of Convergence for Information Technology: 8(3), 79-84. DOI: https://doi.org/10.22156/CS4SMB.2018.8.3.079   DOI
4 H. J. Mun, (2018). Biometric Information and OTP based on authentiction mechanism using blockchain, Journal of convergence for Information Technology: 8(3), 85-90, DOI: https://doi.org/10.22156/CS4SMB.2018.8.3.085   DOI
5 C. J. Chae, S. K. Han, H. J. Cho, (2016). Security vulnerability and countermeasures in smart farm, Journal of Digital Convergence: 14(11), 313-318, DOI: http://dx.doi.org/10.14400/JDC.2016.14.11.313   DOI
6 D. H. Choi, J. O. Park, (2015), Security tendency analysis techniques through machine learning algorithm applications in big data environments, Journal of Digital Convergence: 13(9), 269-276, DOI: http://dx.doi.org/10.14400/JDC.2015.13.9.269   DOI
7 http://jammers4u.com/drones-jammer
8 https://www.usnews.com/news/national-news/articles/2017-11-10/homeland-security-warns-of-weaponized-drones-as-terror-threat
9 http://www.thedrive.com/the-war-zone/17527/russia-is-trying-to-link-the-drone-swarm-attack-in-syria-to-a-us-p-8-patrol-plane
10 https://warontherocks.com/2017/01/the-drone-threat-to-israeli-national-security/
11 J. S. Pleban, R. Band & R. Creutzburg. (2014). Hacking and securing the AR.Drone 2.0 quadcopter: investigations for improving the security of a toy, SPIE 9030, Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2014, DOI: 10.1117/12.2044868
12 J. H. Cheon, K. Han, S. M. Hong, H. J. Kim, J. S. Kim, S. S. Kim, H. S. Seo, H. B. Shim & Y. S. Song. (2018). Toward a Secure Drone System: Flying With Real-Time Homomorphic Authenticated Encryption, IEEE Access 6, 24325-24339. DOI: 10.1109/ACCESS.2018.2819189   DOI
13 A. Sehrawat, T A. Choudhury & G. Raj. (2017). Surveillance drone for disaster management and military security, International Conference on Computing, Communication and Automation (ICCCA) 2017,470-475. DOI: 10.1109/CCAA.2017.8229846
14 P. Blank, S. Kirrane & S. Spiekermann. (2018). Privacy aware restricted areas for unmanned aerial systems, Journal of IEEE Security & Privacy: 16(2), 70-79. DOI: 10.1109/MSP.2018.1870868   DOI
15 E. Vattapparamban, I. Guvenc, A. I. Yurekli, K. Akkaya, S. Uluagac. (2016). Drones for smart cities: Issues in cybersecurity, privacy, and public safety, IWCMC2016;216-221. DOI: 10.1109/IWCMC.2016.7577060
16 P. Perazzo, K. Ariyapala, Z. Conti, G. Dini. (2015). The verifier bee: A path planner for drone based secure location verification, IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM),1-9. DOI: 10.1109/WoWMoM.2015.7158150
17 S. G. Manyam, D. W. Casbeer, S. Manickam. (2017). Optimizing multiple UAV cooperative ground attack missions, International conference on Unmanned Aircraft Systems (ICUAS), 1572-1578. DOI: 10.1109/ICUAS.2017.7991396
18 S. H. Na, J. C. Han & B. J. Ahn. (2014), A Study on the Defence for Deauthentication Attacks in Wi-Fi Network, Korea Communication Society Conference, 631-632.
19 https://github.com/markszabo/drone-hacking/blob/master/README.md
20 V. Dey, V. Pudi, A. Chattopadhyay, Y. Elovici. (2018). securing vulnerabilities of unmanned aerial vehicles and countermeasures: an experimental study, 31st International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID), 398-403. DOI: 10.1109/VLSID.2018.97