• 제목/요약/키워드: vehicle (vehicle)

Search Result 20,447, Processing Time 0.04 seconds

Design of Vehicle Location Tracking System using Mobile Interface

  • Chung, Ji-Moon;Choi, Sung;Ryu, Keun-Ho
    • 한국디지털정책학회:학술대회논문집
    • /
    • 한국디지털정책학회 2004년도 International Conference on Digital Policy & Management
    • /
    • pp.185-202
    • /
    • 2004
  • Recent development in wireless computing and GPS technology cause the active development in the application system of location information in real-time environment such as transportation vehicle management, air traffic control and location based system. Especially, study about vehicle location tracking system, which monitors the vehicle's position in a control center, is appeared to be a representative application system. However, the current vehicle location tracking system can not provide vehicle position information that is not stored in a database at a specific time to users. We designed a vehicle location tracking system that could track vehicle location using mobile interface such as PDA. The proposed system consist of a vehicle location retrieving server and a mobile interface. It is provide not only the moving vehicle's current location but also the position at a past and future time which is not stored in database for users.

  • PDF

기준모델 추종제어를 이용한 독립 후륜조향 차량의 조향 특성해석 (The Handling Characteristics of The Independent Rear Wheel Steering Vehicle Using the Reference Model Following Control)

  • 봉우종;이상호;이언구;한창수
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.130-140
    • /
    • 2000
  • In this paper the reference model following control(RMFC) scheme through the optimal control theory is investigated for the independent rear wheel steering(IRWS) vehicle. RMFC vehicle follows the dynamic performance of a virtual vehicle as a reference model deisgned in the controller. Linear vehicle model of two degres-of-freedom is used to derive control scheme which is applied to full vehicle for evaluating handling performances. And 4WS vehicle through RMFC is compared to the conventional 2WS vehicle and 4WS vehicle in the J-turn test. The RMFC logic is also extended to IRWS vehicle, IRWS with RMFC shows not only the excellent handling performance but salso some advantages in terms of the directional stability and responsiveness from the simulation results.

  • PDF

The Control System Modeling and Experiment for the Tele-operated Unmanned Vehicle

  • Duk sun Yun;Lee, Woon-Sung;Kim, Jung-Ha
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1253-1263
    • /
    • 2002
  • The control system design and modeling of an unmanned vehicle by means of a new concept for better performance through a tole-operation system is suggested by sensor fusion. But, the control of a real vehicle is very difficult, because the system identification of the vehicle is hard to find the unknown factors and the disturbances of the experimental environment. For the longitudinal and lateral controls, the traction system and steering system models are set up and a tuning method to find the gain of the controller by experiments is presented. In this research, mechanical and electronic parts are implemented to operate the unmanned vehicle and data reconstruction method of information about the environment data coming from several sensors is presented by data plot for the vehicle navigation. This paper focuses on the integration of tole-operated unmanned vehicle. This vehicle mainly controlled lateral and longitudinal directions with actuators for controlling vehicle movement and sensors for the closed-loop controlled system.

Vehicle Tests of a Longitudinal Control Law for Application to Stop-and-Go Cruise Control

  • Moon, Ilki;Yi, Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1166-1174
    • /
    • 2002
  • This paper presents the implementation and vehicle tests of a vehicle longitudinal control scheme for Stop and Go cruise control. The control scheme consists of a vehicle-to-vehicle distance control algorithm and throttle/brake control algorithm for acceleration tracking. The desired acceleration of a vehicle for vehicle-to-vehicle distance control has been designed using Linear Quadratic optimal control theory. Performance of the control algorithm has been investigated via vehicle tests. A millimeter wave radar sensor has been used for distance measurement. A stepper motor and an electronic vacuum booster have been used for throttle/brake actuators, respectively. It has been shown that the proposed control algorithm can provide satisfactory performance.

Vehicle Face Recognition Algorithm Based on Weighted Nonnegative Matrix Factorization with Double Regularization Terms

  • Shi, Chunhe;Wu, Chengdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.2171-2185
    • /
    • 2020
  • In order to judge that whether the vehicles in different images which are captured by surveillance cameras represent the same vehicle or not, we proposed a novel vehicle face recognition algorithm based on improved Nonnegative Matrix Factorization (NMF), different from traditional vehicle recognition algorithms, there are fewer effective features in vehicle face image than in whole vehicle image in general, which brings certain difficulty to recognition. The innovations mainly include the following two aspects: 1) we proposed a novel idea that the vehicle type can be determined by a few key regions of the vehicle face such as logo, grille and so on; 2) Through adding weight, sparseness and classification property constraints to the NMF model, we can acquire the effective feature bases that represent the key regions of vehicle face image. Experimental results show that the proposed algorithm not only achieve a high correct recognition rate, but also has a strong robustness to some non-cooperative factors such as illumination variation.

실도로 주행 데이터 기반 차선변경 주행 특성 분석 (Lane Change Driving Analysis based on Road Driving Data)

  • 박종철;채흥석;이경수
    • 자동차안전학회지
    • /
    • 제10권1호
    • /
    • pp.38-44
    • /
    • 2018
  • This paper presents an analysis on driving safety in lane change situation based on road driving data. Autonomous driving is a global trend in vehicle industry. LKAS technologies are already applied in commercial vehicle and researches about lane change maneuver have been actively studied. In autonomous vehicle, not only safety control issue but also imitating human driving maneuver is important. Driving data analysis in lane change situation has been usually dealt with ego vehicle information such as longitudinal acceleration, yaw rate, and steering angle. For this reason, developing safety index according to surrounding vehicle information based on human driving data is needed. In this research, driving data is collected from perception module using LIDAR, radar and RT-GPS sensors. By analyzing human driving pattern in lane change maneuver, safety index that considers both ego vehicle and surrounding vehicle state by using relative velocity and longitudinal clearance has been designed.

Secure Transmission for Two-Way Vehicle-to-Vehicle Networks with an Untrusted Relay

  • Gao, Zhenzhen
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권6호
    • /
    • pp.443-449
    • /
    • 2015
  • This paper considers the physical layer security problem for a two-way vehicle-to-vehicle network, where the two source vehicles can only exchange information through an untrusted relay vehicle. The relay vehicle helps the two-way transmission but also acts as a potential eavesdropper. Each vehicle has a random velocity. By exploiting the random carrier frequency offsets (CFOs) caused by random motions, a secure double-differential two-way relay scheme is proposed. While achieving successful two-way transmission for the source vehicles, the proposed scheme guarantees a high decoding error floor at the untrusted relay vehicle. Average symbol error rate (SER) performance for the source vehicles and the untrusted relay vehicle is analyzed. Simulation results are provided to verify the proposed scheme.

차량 궤적 예측기법을 이용한 차량 정지/서행 순항 제어 (Vehicle Stop and Go Cruise Control using a Vehicle Trajectory Prediction Method)

  • 조상민;이경수
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.206-213
    • /
    • 2002
  • This paper proposes a vehicle trajectory prediction method for application to vehicle-to-vehicle distance control. This method is based on 2-dimensional kinematics and a Kalman filter has been used to estimate acceleration of the object vehicle. The simulation results using the proposed control method show that the relative distance characteristics can be improved via the trajectory prediction method compared to the customary vehicle stop and go cruise control systems which makes the vehicle remain at a safe distance from a preceding vehicle according to the driver's preference, automatically slow down and come to a full stop behind a preceding vehicle.

국부적 유연성이 차량 시스템 동특성에 미치는 영향 (Flexibility Effects of the Vehicle Components on the Dynamic Characteristics of the Vehicle Systems)

  • 이상범;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.682-686
    • /
    • 2001
  • A fundamental structural design consideration for a vehicle is the overall vibration characteristics in bending and torsion. Vibration characteristics of a vehicle system are mainly influenced by dynamic stiffness of the vehicle body structure and material and physical properties of the components attached to the vehicle body structure. The first step in satisfying this requirement is to obtain a satisfactory dynamic model of the vehicle structure. In this paper. modeling techniques of the vehicle components are presented and the effects of the vehicle components on the vibration characteristics of the vehicle are investigated,

  • PDF

지프차량의 전복성향 해석 (Rollover Propensity Analysis of A Jeep Vehicle)

  • 백운경
    • 한국안전학회지
    • /
    • 제14권4호
    • /
    • pp.85-92
    • /
    • 1999
  • Vehicle rollover is an important issue for the traffic safety. Rollover can occur from the driver's action, the vehicle characteristics, or the road condition. This study is about the rollover propensity analysis of a jeep vehicle using the steering and braking maneuver, which is the combined result by the driver and the vehicle. Simple equations of roll motion is used to analyze the roll motion and a special purpose vehicle dynamics program is used to simulate the rollover of the jeep vehicle. From the simulation, an incipient rollover motion of the vehicle was found. However, the more complete rollover propensity analysis would require further investigation using roll dynamic sensitivity study.

  • PDF