• Title/Summary/Keyword: vegetation monitoring

Search Result 558, Processing Time 0.029 seconds

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image (초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.845-859
    • /
    • 2020
  • Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.

Study of the UAV for Application Plans and Landscape Analysis (UAV를 이용한 경관분석 및 활용방안에 관한 기초연구)

  • Kim, Seung-Min
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.213-220
    • /
    • 2014
  • This is the study to conduct the topographical analysis using the orthophotographic data from the waypoint flight using the UAV and constructed the system required for the automatic waypoint flight using the multicopter.. The results of the waypoint photographing are as follows. First, result of the waypoint flight over the area of 9.3ha, take time photogrammetry took 40 minutes in total. The multicopter have maintained the certain flight altitude and a constant speed that the accurate photographing was conducted over the waypoint determined by the ground station. Then, the effect of the photogrammetry was checked. Second, attached a digital camera to the multicopter which is lightweight and low in cost compared to the general photogrammetric unmanned airplane and then used it to check its mobility and economy. In addition, the matching of the photo data, and production of DEM and DXF files made it possible to analyze the topography. Third, produced the high resolution orthophoto(2cm) for the inside of the river and found out that the analysis is possible for the changes in vegetation and topography around the river. Fourth, It would be used for the more in-depth research on landscape analysis such as terrain analysis and visibility analysis. This method may be widely used to analyze the various terrains in cities and rivers. It can also be used for the landscape control such as cultural remains and tourist sites as well as the control of the cultural and historical resources such as the visibility analysis for the construction of DSM.

Distribution Characteristics and Management Plan of the Wisteria Habitat (No. 176 natural monument) of Beomeosa Temple in Busan (부산 범어사 등나무군락지의 등나무 분포 특성 및 관리방안)

  • Lee, Chang-Woo;Oh, Hae-Seong;Lee, Cheol-Ho;Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.2
    • /
    • pp.77-86
    • /
    • 2017
  • A study on the population ecology of gregarious Wisteria habitat was conducted in Beomeosa temple, Busan. The area has been protected since it was designated as No. 176 natural monument in 1966. Such a large habitat of native wisteria (Wisteria floribunda DC.) in Korea is very rare so that it has a very high academic value. However, there are no high-resolution researches on the distribution and ecology of wisteria in the Gregarious Wisteria Habitat of Beomeosa Temple. The study aimed to identify the distribution and characteristics of wisteria populations in the Wisteria habitat. The study identified the distribution of Wisteria, RCC, the climbing direction, the plant and flora in the research area in the Gregarious Wisteria Habitat of Beomeosa Temple in Busan and the surrounding areas based on an on-site research. As a result, the total number of the wisteria populations in the research area was confirmed to be 1,158 and the RCC of wisteria was on average 69.0 mm (${\pm}45.5$) and in maximum 365 mm. In terms of the climbing direction, the number of wisteria that climbs clockwise or counterclockwise was determined to be 40. It was identified that there are 28 taxa of the climbing plant species and the wisteria of the same kind was the most favorable. The populations were found to be dispersed adjacent to the valleys, and were found to be maintained by constant disturbance. 76.6 % of the population was found to be distributed in the valley forest, and the Carpinus tschonoskii-Pseudosasa japonica forest, Pueraria lobata community and Pinus densiflora forest were found to be relatively dispersed. The study proposed to conduct the follow-up researches to preserve the wisteria that is spreading in this research area, the wisteria with the highest RCC and regional habitat through continuous monitoring; and maintain the protection area of No. 176 natural monument; and discussed the management measures and approaches that reflect the habitat.

The Structure of the Plant Community in Seonamsagol(Valley), Jogyesan(Mt.) Provincial Park, Suncheon City (순천시 조계산도립공원 선암사골 계곡부 식물군집구조)

  • Kim, Jong-Yup
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.593-603
    • /
    • 2012
  • This study was carried out to investigate the ecological succession sere and conservative value, and to provide the basic data for the planning of the Provincial Park Management in Seonamsagol(Valley), Jogyesan(Mt.) Provincial Park(altitude 884m), Suncheon City, Korea by analysing the structure of the plant community. Twenty plots(size is $20m{\times}20m$) were set up at an altitude of range from 315m to 480m. As a result of analysis of TWINSPAN which is one of the ordination technique, the plant communities were divided into four groups which are community I(Quercus variabilis community), community II(Q. serrata community), community III(Decideous broad-leaved plant community), and community IV(Carpinus tschonoskii community). The warmth index is $104^{\circ}C{\cdot}month$ based on the data of monthly mean temperature during the past thirty years(1981~2010), so we found out that the vegetation of the study site located in the South Temperate Climate Zone. We supposed that the ecological succession sere of the study site is in the early stage of developing from Q. serrata community to Carpinus tshonoskii community, however we should do a long-term monitoring to investigate the changes of the ecological succession each plant community, meanwhile Sasa borealis was dominant species in the shrub layer. The diameter at breast height of specimen tree is range from 20 to 55cm(average 36cm) and the height of that is range from 14 to 35m(average 23cm). The age of community I was 64 years old, that of community II was from 59 to 64 years old, that of community III was from 51 to 62 years old, and that of community IV was from 41 to 68 years old, thus the age of the study site is about from 38 to 72 years old. According to the index of Shnnon's diversity(unit: $400m^2$), community IV was ranged from 0.8452 to 1.2312, community III was ranged from 0.8044 to 1.1404, community II was ranged from 0.8221 to 0.9971, and community I was 0.8324.

Comparison of nutrient removal efficiency of an infiltration planter and an infiltration trench (침투도랑(IT)과 침투화분(IP)의 영양염류 저감효율 비교분석)

  • Yano, K.A.V.;Geronimo, F.K.F.;Reyes, N.J.D.G.;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.384-391
    • /
    • 2019
  • Nutrients in stormwater runoff have raised concerns regarding water quality degradation in the recent years. Low impact development (LID) technologies are types of nature-based solutions developed to address water quality problems and restore the predevelopment hydrology of a catchment area. Two LID facilities, infiltration trench (IT) and infiltration planter (IP), are known for their high removal rate of nutrients through sedimentation and vegetation. Long-term monitoring was conducted to assess the performance and cite the advantages and disadvantages of utilizing the facilities in nutrient removal. Since a strong ionic bond exists between phosphorus compounds and sediments, reduction of total phosphorus (TP) (more than 76%), in both facilities was associated to the removal of total suspended solids (TSS) (more than 84%). The efficiency of nitrogen in IP is 28% higher than IT. Effective nitrification occurred in IT and particulate forms of nitrogen were removed through sedimentation and media filters. Decrease in ammonium- nitrogen (NH4-N) and nitrite-nitrogen (NO2-N), and increase in nitrate-nitrogen (NO3-N) fraction forms indicated that effective nitrification and denitrification occurred in IP. Hydrologic factors such as rainfall depth and rainfall intensity affected nutrient treatment capabilities of urban stormwater LID facilities The greatest monitored rainfall intensity of 11 mm/hr for IT yielded to 34% and 55% removal efficiencies for TN and TP, respectively, whereas, low rainfall intensities below 5 mm resulted to 100 % removal efficiency. The greatest monitored rainfall intensity for IP was 27 mm/hr, which still resulted to high removal efficiencies of 98% and 97% for TN and TP, respectively. Water quality assessment showed that both facilities were effective in reducing the amount of nutrients; however, IP was found to be more efficient than IT due to its additional provisions for plant uptake and larger storage volume.

Analysis on the Growth Environment of Chionanthus retusus Community at the Wansanchielbong in Jeonju (전주 완산칠봉 이팝나무 자생지의 생육환경으로 본 자연유산 가치 분석)

  • Kim, Yeon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.85-97
    • /
    • 2010
  • This study analyzed the distribution, structure and environmental condition of the vegetation of the Chionanthus retusus Lindly et Paxton community at the Wansanchielbong in the Jeonju city to offer basic data for sustainable conservation and ecological management system. And the results are as follows; 1. The average pH of soil at the community was pH 5.69 and it was slightly higher than the average of forest soil pH of Korea. But if the degree of pH will be down, it will be needed some more fertilization of Calcium. 2. The total average for contents of organism was 4.98%. And the nitrate - nitrogen content(mg/kg) of A, B, C, D quadrat was 20.29%, 28.87%, 7.65%, and 23.3% respectively. And there were good condition except quadrat C which was contaminated by amount of earth and sand. 3. The flora of the Chionanthus retusus Lindly et Paxton community was listed as 60 taxa; 37 families, 50 genera, 47 species, 10 varieties and 3 forms. The average appearance species of each Quadrat were A sector 30, B sector 26, C sector 19 and D 19 taxa respectively. 4. Surveyed woody plants in the community were as follows : Chionanthus retusus, Zelkova serrata, Quercus variabilis, Cornus walteri, Robinia pseudo-acacia and those were mixed status. And Chionanthus retusus, Zelkova serrata, Robinia pseudo-acacia, Albizzia julibrisin, Cudrania tricuspidata, Symplocos chinensis for. pilosa were mixed in mid layer trees. Herbaceous plants were founded such as Chionanthus retusus, Zelkova serrata, Robinia pseudo-acacia, Grewia parviflora, Rosa multiflora, Trachelospermum asiaticum was dominant with 35~64% in the ground cover, and Commelina communis, Calamagrostis arundinacea, Dryopteris bissetiana, Lilium lancifolium were founded also. 5. The importance values of Chionanthus retusus was 40.2% in the quadrat A1, 50.2% at quadrat A, 50.0% B1, 45.2% B2, 22.4% C1, 73.6% C2, 33.2% D1 and the total average of I.V. was 44.9%. 6. The average height of surveyed Chionanthus retusus was 5.7m and the average DBH was 12.4cm. The number of trees higher than 2m were 107 and the number of trees lower than 2m were 63. The total numbers of Chionanthus retusus were 170. 7. The age of surveyed Chionanthus retusus were analyzed 42 thru 87 years old and that of Zelkova serrata were 42, Quercus variabilis were 60, Quercus aliena were 48, Robinia pseudo-acacia were 40. 8. The number of trees with DBH 40 through 50cm were 6, and that of 30~39cm were 3, and that of 20~29cm were 16, so the total number that was over 20cm was 25. And there were 70 trees under 10cm of DBH and 63 seedlings. It will be very important data to conserve the habitat that the structure and environmental condition of the Chionanthus retusus Lindly et Paxton community at the Wansanchielbong was stable, and sustainable monitoring will be needed. Now that community is nurse forest of Jeonju City but more positive preservation plan will be needed and assigning monument of city or province also be necessary.

Precise, Real-time Measurement of the Fresh Weight of Lettuce with Growth Stage in a Plant Factory using a Nutrient Film Technique (NFT 수경재배 방식의 식물공장에서 생육단계별 실시간 작물 생체중 정밀 측정 방법)

  • Kim, Ji-Soo;Kang, Woo Hyun;Ahn, Tae In;Shin, Jong Hwa;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • The measurement of total fresh weight of plants provides an essential indicator of crop growth for monitoring production. To measure fresh weight without damaging the vegetation, image-based methods have been developed, but they have limitations. In addition, the total plant fresh weight is difficult to measure directly in hydroponic cultivation systems because of the amount of nutrient solution. This study aimed to develop a real-time, precise method to measure the total fresh weight of Romaine lettuce (Lactuca sativa L. cv. Asia Heuk Romaine) with growth stage in a plant factory using a nutrient film technique. The total weight of the channel, amount of residual nutrient solution in the channel, and fresh shoot and root weights of the plants were measured every 7 days after transplanting. The initial weight of the channel during nutrient solution supply (Wi) and its weight change per second just after the nutrient solution supply stopped were also measured. When no more draining occurred, the final weight of the channel (Ws) and the amount of residual nutrient solution in the channel were measured. The time constant (${\tau}$) was calculated by considering the transient values of Wi and Ws. The relationship of Wi, Ws, ${\tau}$, and fresh weight was quantitatively analyzed. After the nutrient solution supply stopped, the change in the channel weight exponentially decreased. The nutrient solution in the channel slowly drained as the root weight in the channel increased. Large differences were observed between the actual fresh weight of the plant and the predicted value because the channel included residual nutrient solution. These differences were difficult to predict with growth stage but a model with the time constant showed the highest accuracy. The real-time fresh weight could be calculated from Wi, Ws, and ${\tau}$ with growth stage.

Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images (Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.989-998
    • /
    • 2021
  • In the utilization of optical satellite imagery, which is greatly affected by clouds, periodic composite technique is a useful method to minimize the influence of clouds. Recently, a technique for selecting the optimal pixel that is least affected by the cloud and shadow during a certain period by directly inputting cloud and cloud shadow information during period compositing has been proposed. Accurate extraction of clouds and cloud shadowsis essential in order to derive optimal composite results. Also, in the case of an surface targets where spectral information is important, such as crops, the loss of spectral information should be minimized during cloud-free compositing. In thisstudy, clouds using two spectral indicators (Haze Optimized Tranformation and MeanVis) were used to derive a detection technique with low loss ofspectral information while maintaining high detection accuracy of clouds and cloud shadowsfor cabbage fieldsin the highlands of Gangwon-do. These detection results were compared and analyzed with cloud and cloud shadow information provided by Sentinel-2A/B. As a result of analyzing data from 2019 to 2021, cloud information from Sentinel-2A/B satellites showed detection accuracy with an F1 value of 0.91, but bright artifacts were falsely detected as clouds. On the other hand, the cloud detection result obtained by applying the threshold (=0.05) to the HOT showed relatively low detection accuracy (F1=0.72), but the loss ofspectral information was minimized due to the small number of false positives. In the case of cloud shadows, only minimal shadows were detected in the Sentinel-2A/B additional layer, but when a threshold (= 0.015) was applied to MeanVis, cloud shadowsthat could be distinguished from the topographically generated shadows could be detected. By inputting spectral indicators-based cloud and shadow information,stable monthly cloud-free composited vegetation index results were obtained, and in the future, high-accuracy cloud information of Sentinel-2A/B will be input to periodic cloud-free composite for comparison.

Analysis of Environmental Factors and Change of Vascular Plant Species along an Elevational Gradients in Baekdansa, Mt. Taebaeksan National Park (태백산국립공원 백단사코스의 고도별 관속식물상 변화와 환경요인 분석)

  • An, Ji-Hong;Park, Hwan-Joon;Lee, Sae-rom;Seo, In-Soon;Nam, Gi-Heum;Kim, Jung-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.378-401
    • /
    • 2019
  • This study generated a list of plants in eight sections from the Baekdansa ticket office (874m) to Cheonjedan (1,560m) divided in the interval of 100m above sea level to examine the species diversity patterns and distribution changes of the vascular plants at different altitudes in Taebaeksan National Park. Four site surveys found a total of 385 taxa: 89 families, 240 genera, 345 species, 5 subspecies, 34 varieties, and 1 form. A result of analyzing the change of species diversity along elevational gradients showed that it decreased with increasing elevation and then increased from a certain section. A result of analyzing habitat affinity types showed that the proportion of forest species increased with increasing elevation. On the other hand, the ruderal species appeared at a high rate in the artificial interference section. A result of comparing the proportion of woody and herb plants showed that the woody plants gradually increased with elevation and rapidly decreased in the artificial interference section. On the other hand, the herb plants showed the opposite trend. A result of analyzing the change of distribution of species according to altitude with the DCA technique showed that the vascular plants were divided into three groups according to the elevation in order on the I axis with the boundaries at 900m and 1,300m above sea level. The arrangement of each stand from right to left along the altitude on the I axis with a significant correlation with warmth index (WI) confirmed that the temperature change along the altitude could affect the distribution of vascular plants, composition, and diversity. Therefore, the continuous monitoring is necessary to confirm ecological and environmental characteristics of vegetation, distribution ranges, changes of habitat. We expect that the results of this study will be used as the basic data for establishing the measurement measures related to the preservation of biodiversity and climate change.

Understanding the Impact of Environmental Changes on the Number of Species and Populations of Odonata after Creating a Constructed Wetland (인공습지 조성 후 환경변화가 잠자리목의 종수 및 개체수에 미치는 영향 파악)

  • Lee, Soo-Dong;Bae, Soo-Hyoung;Lee, Gwang-Gyu
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.515-529
    • /
    • 2020
  • Constructed wetlands undergo biological and physical changes such as an increase in the proportion of arid plants due to the natural succession process after formation. It can adversely affect not only the purification function but also the habitat of species. As such, this study aims to identify environmental factors affecting biodiversity and propose management plans based on the monitoring results of physical environmental changes and the emergence of species in seven constructed wetlands selected based on the water depth and surrounding conditions among the lands purchased by the Nakdong River basin. We examined the environmental conditions and emergence of the Odonata, which is a wetland-dependent species, to predict the trend of changes in biodiversity and abundance. The results showed that the open water area decreased as the emergent plants spread to the deep water in 2015 compared to 2012 when they were initially restored to a depth of 0.2 to 1 m. While a total of 54 dragonfly species were observed, the habitat diversity, such as vegetation, water surface, and grassland, remained similar to the initial formation of the wetlands despite the expansion of the emergent plants. On the other hand, the number of Agrionidae species, which prefer areas with fewer aquatic plants, decreased between 2012 and 2015 due to the diminished water surface. The p-values of the differences in the number of species and population between wetlands by year were 2.568e-09 and 1.162e-08, respectively, indicating the statistically significant differences. The decrease in open water surface was found to have the greatest effect on the biodiversity and habitat density of dragonflies. The time-series survey of constructed wetlands confirmed that the spread of Phragmites communis, P. japonica, Typha orientalis, etc., caused a decrease in species diversity. It suggests that environmental management to maintain the open water surface area is necessary.