• Title/Summary/Keyword: vegetation mapping

Search Result 125, Processing Time 0.034 seconds

The comparative study of PKNU2 Image and Aerial photo & satellite image

  • Lee, Chang-Hun;Choi, Chul-Uong;Kim, Ho-Yong;Jung, Hei-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.453-454
    • /
    • 2003
  • Most research materials (data), which are used for the study of digital mapping and digital elevation model (DEM) in the field of Remote Sensing and Aerial Photogrammetry are aerial photographs and satellite images. Additionally, they are also used for National land mapping, National land management, environment management, military purposes, resource exploration and Earth surface analysis etc. Although aerial photographs have high resolution, the data, which they contain, are not used for environment exploration that requires continuous observation because of problems caused by its coastline, as well as single - spectral and long-term periodic image. In addition to this, they are difficult to interpret precisely because Satellite Images are influenced by atmospheric phenomena at the time of photographing, and have by far much lower resolution than existing aerial photographs, while they have a great practical usability because they are mulitispectral images. The PKNU 2 is an aerial photographing system that is made to compensate with the weak points of existing aerial photograph and satellite images. It is able to take pictures of very high resolution using a color digital camera with 6 million pixels and a color infrared camera, and can take perpendicular photographs because PKNU 2 system has equipment that makes the cameras stay level. Moreover, it is very cheap to take pictures by using super light aircraft as a platform. It has much higher resolution than exiting aerial photographs and satellite images because it flies at a low altitude about 800m. The PKNU 2 can obtain multispectral images of visible to near infrared band so that it is good to manage environment and to make a classified diagram of vegetation.

  • PDF

Mapping the Potential Distribution of Raccoon Dog Habitats: Spatial Statistics and Optimized Deep Learning Approaches

  • Liadira Kusuma Widya;Fatemah Rezaie;Saro Lee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.4
    • /
    • pp.159-176
    • /
    • 2023
  • The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.

Estimation of Changes in Potential Forest Area under Climate Change (기후변화하(氣候變化下)에서 잠재삼림면적(潛在森林面積)의 변화(變化) 예측(豫測))

  • Cha, Gyung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.3
    • /
    • pp.358-365
    • /
    • 1998
  • To offer the basic information for sustainable production of forest resources and conservation of the global environment, change in potential natural vegetation (PNV) associated with climate change due to doubling atmospheric carbon dioxide ($2{\times}CO_2$) was estimated with the global natural vegetation mapping system based an K${\ddot{o}}$ppen scheme. The system interpolates climate data spherically to each grid cell, determines the vegetation types onto the grid cell, and produces potential vegetation map and area on the globe and continents. The climate data consist of the current, ($1{\times}CO_2$) climate prior to AD 1958 observed at some 2,000 stations and the doubling ($2{\times}CO_2$) climate estimated from Meteorological Research Institute of Japan. The vegetation zone under the $2{\times}CO_2$ climate scenario expanded mainly toward the poles due to the rise in temperature. The changed PNV area on the globe amounts to 1/3 (4.91 billion (G) ha) of the total land area (15.04 Gha). Kappa statistic for judging agreement between the patterns of vegetation distribution under $1{\times}CO_2$ climate and $2{\times}CO_2$ climates shows good agreement (0.63) for the globe as a whole. The most stable areas are desert and ice. The potential forest area (PFA) was estimated at 6.82 Gha of the land area in $2{\times}CO_2$ climate scenario. In terms of continental changes in PFA, North America and Asis are increased under the $2{\times}CO_2$ climate. However, the potential forest arms of the other continents are decreased by the climate. Europe has no change in the PFA. Especially, the expansion of desert area in Oceania would be accelerated by the $2{\times}CO_2$ climate.

  • PDF

Ecoclimatic Map over North-East Asia Using SPOT/VEGETATION 10-day Synthesis Data (SPOT/VEGETATION NDVI 자료를 이용한 동북아시아의 생태기후지도)

  • Park Youn-Young;Han Kyung-Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.86-96
    • /
    • 2006
  • Ecoclimap-1, a new complete surface parameter global database at a 1-km resolution, was previously presented. It is intended to be used to initialize the soil-vegetation- atmosphere transfer schemes in meteorological and climate models. Surface parameters in the Ecoclimap-1 database are provided in the form of a per-class value by an ecoclimatic base map from a simple merging of land cover and climate maps. The principal objective of this ecoclimatic map is to consider intra-class variability of life cycle that the usual land cover map cannot describe. Although the ecoclimatic map considering land cover and climate is used, the intra-class variability was still too high inside some classes. In this study, a new strategy is defined; the idea is to use the information contained in S10 NDVI SPOT/VEGETATION profiles to split a land cover into more homogeneous sub-classes. This utilizes an intra-class unsupervised sub-clustering methodology instead of simple merging. This study was performed to provide a new ecolimatic map over Northeast Asia in the framework of Ecoclimap-2 global database construction for surface parameters. We used the University of Maryland's 1km Global Land Cover Database (UMD) and a climate map to determine the initial number of clusters for intra-class sub-clustering. An unsupervised classification process using six years of NDVI profiles allows the discrimination of different behavior for each land cover class. We checked the spatial coherence of the classes and, if necessary, carried out an aggregation step of the clusters having a similar NDVI time series profile. From the mapping system, 29 ecosystems resulted for the study area. In terms of climate-related studies, this new ecosystem map may be useful as a base map to construct an Ecoclimap-2 database and to improve the surface climatology quality in the climate model.

Analysis of Factors Affecting Retention Time in Grassed Swale (식생수로에서 유하시간에 영향을 주는 인자 분석)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • Recently the water quality management policy gives priority to management the point source. Point pollution sources have definite emission points and are discharged to one point through a pipe. But Nonpoint pollution source (NPS) has uncertain pathway, pollutant load and runoff characteristics unlike point pollution sources, making them difficult to manage. Thus, the Korea government plans to develop and equip facilities that help reduce NPS so as to manage them more easily. But removal efficiency of Best Management Practice (BMPs) is in influenced by rainfall, hydrologic condition like natural phenomenon, so factors of removal efficiency are difficult. Thus there is a need for multilateral research about many factors that affect removal efficiency for removal facility design of proper non-point pollution. In this research, mapping, vegetation coverage and retention time were investigated in the case of factors that affect removal efficiency in grassed swale, a nature-type non-point removal facility. Grassed swale obtained changed of coverage using Braun-Blanquet within swale and retention time was obtained from point that rainfall effluent enters into swale to the time that first outflow starts. Besides, correlation analysis was obtained using pearson correlation analysis method. As a result, it was shown that removal efficiency increases as retention time is longer in grassed swale and that retention time increases as vegetation coverage is higher.

Vegetation Mapping and Fodder Value of Plant Communities at the natural Grassland (자연초지 식생군락의 사료가치와 식생도 작성)

  • ;G. Spatz
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.2
    • /
    • pp.91-96
    • /
    • 1986
  • This trial was carried out to find out the degree of fodder value of different plant communities and to make the plant sociological vegetation map for all plant communities at the natural grassland of the Rehberg-Alm in the Bavarian Alps, southern part of Germany during 1982-1983. 1. Allogenic succession of the plant communities at natural grassland was much more influenced by the change of soil moisture or/and surface water than sheep grazing. 2. The plant communities at the Rehberg-Alm were Nardetum alpigenum, Poo-Prunelletum, Cirsium arvense Cirsium Vulgare-Association, Caricetum davallianae, Rumicetum alphini, Caricetum paniculatae and Disturbed lowland bog-Stand. 3. By the sheep grazing will be improved the inferior plant community of Nardetum alpigenum to the most desirable Poo-Prunelletum plant community at the mountainous grassland gradually. 4. General fodder value in this area depended heavily on the composition of vegetation of the plant communities. The highest fodder value was the Poo-Prunelletum with 4.4 and the next was the Nardetum alpigenum with 2.5. The others were not suitable for grazing pasture due to less fodder value.

  • PDF

NDVI Based on UAVs Mapping to Calculate the Damaged Areas of Chemical Accidents (화학물질사고 피해영역 산출을 위한 드론맵핑 기반의 정규식생지수 활용방안 연구)

  • Lim, Eontaek;Jung, Yonghan;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1837-1846
    • /
    • 2022
  • The annual increase in chemical accidents is causing damage to life and the environment due to the spread and residual of substances. Environmental damage investigation is more difficult to determine the geographical scope and timing than human damage investigation. Considering the reality that there is a lack of professional investigation personnel, it is urgent to develop an efficient quantitative evaluation method. In order to improve this situation, this paper conducted a chemical accidents investigation using unmanned aerial vehicles(UAV) equipped with various sensors. The damaged area was calculated by Ortho-image and strength of agreement was calculated using the normalized difference vegetation index image. As a result, the Cohen's Kappa coefficient was 0.649 (threshold 0.7). However, there is a limitation in that analysis has been performed based on the pixel of the normalized difference vegetation index. Therefore, there is a need for a chemical accident investigation plan that overcomes the limitations.

UAV-based Land Cover Mapping Technique for Monitoring Coastal Sand Dunes

  • Choi, Seok Keun;Kim, Gu Hyeok;Choi, Jae Wan;Lee, Soung Ki;Choi, Do Yoen;Jung, Sung Heuk;Chun, Sook Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • In recent years, coastal dune erosion has accelerated as various structures have been developed around the coastal dunes. A land cover map should be developed to identify the characteristics of sand dunes and to monitor the condition of sand dunes. The Korean Ministry of Environment's land cover maps suffer from problems, such as limited classes, target areas, and durations. Thus, this study conducted experiments using RGB and multispectral images based on UAV (Unmanned Aerial Vehicle) over an approximately one-year cycle to create a land cover map of coastal dunes. RF (Random Forest) classifier was used for the analysis in accordance with the experimental region's characteristics. The pixel- and object-based classification results obtained by using RGB and multispectral cameras were evaluated, respectively. The study results showed that object-based classification using multispectral images had the highest accuracy. Our results suggest that constant monitoring of coastal dunes can be performed effectively.

A Study on Korea Inland Wetland Boundary Delineation (한국 내륙습지 경계설정에 대한 제언)

  • Moon, Sang-Kyun;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.2
    • /
    • pp.15-30
    • /
    • 2014
  • Systematic management of wetlands should be a priority to build the data for the extent and distribution of wetlands all over the country. However there are no clear guidelines for the wetland boundary delineation, so researchers have to determine the boundary of wetlands in each different way. As a result, it is very difficult to identify the extent and distribution of wetlands. This study proposes applicable criteria of setting boundary of wetlands which consider their wetland vegetation and geographical characteristics, according to wetland classification. The proposed site in this study is selected wetlands that represent each wetland type and have been ecologically well preserved like the wetland protected areas. GIS data for setting the boundary of wetlands selected were land-cover maps, aerial photographs, high resolution satellite images, and digital topographic maps. In this study, 'wetland unit determination' of the Washington State Wetlands Rating System(WSDE, 1993) and the concept of 'Wetland and Deep-water Habitats' was suggested by Wetland Delineation Manual(USACE, 1987) were used as criteria for setting the boundary of wetlands. As a result, it was found that the boundary of wetlands could be, in general, set consistently. Also, it seemed possible to set systematic and standardized boundary of wetlands and to provide more objective data for establishing national wetland policies, if maps of wetlands are made and an investigation of wetlands is implemented according to the criteria.

GIS-based Landslide Susceptibility Mapping of Bhotang, Nepal using Frequency Ratio and Statistical Index Methods

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.357-364
    • /
    • 2017
  • The purpose of the study is to develop and validate landslide susceptibility map of Bhotang village development committee, Nepal using FR (Frequency Ration) and SI (Statistical Index) methods. For the purpose, firstly, a landslide inventory map was constructed based on mainly high resolution satellite images available in Google Earth Pro, and rest fieldwork as verification. Secondly, ten conditioning factors of landslide occurrence, namely: altitude, slope, aspect, mean topographic wetness index, landcover, normalized difference vegetation index, dominant soil, distance to river, distance to lineaments and rainfall, were derived and used for the development of landslide susceptibility map in GIS (Geographic Information System) environment. The landslide inventory of total 116 landslides was divided randomly such that 70% were used for training and remaining 30% for validating result by receiver operating characteristics curve analysis. The area under the curve were found to be greater than 0.7 indicating an acceptable susceptibility maps obtained using FR and SI methods in GIS for hilly region of Nepal.