• Title/Summary/Keyword: vegetation control

Search Result 355, Processing Time 0.024 seconds

Efficacy of Blanket Vegetation Mats on Soil and Native Groundcover Plants under Treatment of High Concentration Deicing Salt (고농도 제설제 처리에서 토양 및 자생 초화류에 미치는 Blanket 식생매트의 효용성)

  • Ju, Jin Hee;Lee, Je Man;Kim, Won Tae;Lim, Byung Ok;Seo, Nam Kyu;Yoon, Yong Han
    • Journal of Environmental Science International
    • /
    • v.31 no.3
    • /
    • pp.247-254
    • /
    • 2022
  • This study investigated the effect of vegetation mat on plant growth and salt reduction in the soil treated with high concentration deicing salt. In order to measure soil chemical characteristics and plant growth, three native groundcover plants (Dendranthema zawadskii var. latilobum, Dendranthema boreale, and Kalimeris yomena) were grown in each of the three plastic containers (50.0 cm width × 35.0 cm length × 8.5 cm deep) with a high concentration treatment of calcium chloride deicing salt. There were two treatments: control, and BVM that combines B (blanket) and VM (vegetation mat). 1,600 g of soil was placed on the top of the drainage layer with 290 g of perlite, 100 seeds each of the three native plants with three repetitions were sowed, and 10 g/L of calcium chloride deicing salt was added in the treatment. As a result of the chemical properties of soil, soil in control treatment was acidic and soil electrical conductivity in BVM was the lowest. Also, exchangeable cations (K+, Ca2+, Na+, and Mg2+) in soil and all the three plants were significantly decreased in the BVM treatment. Meanwhile, the germination rate of Dendranthema zawadskii var. latilobum was the highest under high concentration deicing salt in compared to the two plants. Overall, three native groundcover plant growth was higher in the BVM than control treatment significantly. These results suggest that the treatment of blanket vegetation mat has a positive effect on soil and plant growth in soil damaged by deicing salt.

Analysis of Effects on Soil Erosion Reduction of Various Best Management Practices at Watershed Scale (최적관리기법에 따른 토양유실 저감 효과 유역단위 분석)

  • Lee, Dong Jun;Lee, Ji Min;Kum, Donghyuk;Park, Youn Shik;Jung, Younghun;Shin, Yongchul;Jeong, Gyo-Cheol;Lee, Byeong Cheol;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.638-646
    • /
    • 2014
  • Soil erosion from agricultural fields leads to various environmental problems weakening the capabilities of flood control and ecosystem in water bodies. Regarding these problems, Ministry of Environment of South-Korea prepared various structural and non-structural best management practices (BMPs) to control soil erosion. However, a lot of efforts are required to monitor and develop BMPs. Thus, modeling techniques have been developed and utilized for these issues. This study estimated the effectiveness of BMPs which are a vegetation mat with infiltration roll and Roll type vegetation channel using Soil and Water Assessment Tool (SWAT) model through the adjustment of the conservation practice factors, P factors, for Universal Soil Loss Equation which were calculated by monitoring data collected at the segment plots. Each BMP was applied to the areas with slopes ranged from 7% to 13% in the Haeanmyeon watershed. As a result of simulation, the vegetation mat with infiltration roll and Roll type vegetation channel showed 55% and 59% efficiency of soil erosion reduction, respectively. Also, Vegetation mat with infiltration roll and Roll type vegetation channel showed each 11.2% and 11.8% efficiency in reduction of sediment discharge. These roll type vegetation channel showed greater efficiency of soil erosion reduction and sediment discharge. Based on these results, if roll type vegetation channel is widely used in agricultural fields, reduction of soil erosion and sediment discharge of greater efficiency would be expected.

The Effects of Silvopastoral Practice on Changes of Understory Vegetation in a Japanese Larch (Larix kaempferi) Plantation

  • Kang, Sung Kee;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.151-159
    • /
    • 2007
  • This study was conducted to investigate the effects of thinning on changes in stand characteristics and understory vegetation in a silvopasture practiced Japanese larch plantation in the Research Forest of Kangwon National University, Korea. Three different thinning intensities (64%, 35%, and control) were applied. Before and after thinning, the understory plant species increased its number from 48 (7 tree species, 7 shrubs species, 28 herbaceous species, and 6 woody climbers) to 100 (11 tree species, 15 shrub species, 67 herbaceous species, and 7 woody climbers). Thinning made plants invade easily on the forest floor, and plot A (325 stems/ha) had much higher number of undersory species than those Of plot B (575 stems/ha) and control plot (1,150 stems/ha). In three years after thinning, understory aboveground biomass (kg/ha) of herbs were 523 for control, 1,230 for plot B, and 1,288 for plot A. The canopy coverage had remarkable influence on the understory biomass production, resulting in relatively small amount of herbage production on control plot. The differences were statistically significant between thinned plots and unthinned plot, but there were no significant differences among the thinned plots (p<0.05).

The Technique of Landslide Hazard Prediction Using Vegetation Interpretation of Aerial Photo (항공사진의 식생 판독에 의한 재해 예측 기법)

  • 강인준;곽재하;정재형
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.1
    • /
    • pp.29-35
    • /
    • 1993
  • The vegetation such as grass, shrub, tree has been used to control the erosion and stabilize the slope for a long time. But the effects of vegetation on slope area is usually neglected in traditional stability analyses. There are many errors in slope analyses in thin soil mantles. Therefore the effects of vegetation is an important factor. But it is difficult and complex to represent the vegetation influence quantitatively in stability analysis. In this study, authors choose the landslide region at the Kum sung dong Kum-jung ku Pusan as a model area. Authors analyzed the degree of slope with the aerial photo interpretation and DTM data extracted from the topographic map, and the relationship of D.B.H. (diameter of breast height), height, and age of tree in field investigation data. Finally authors know the fact that landslide take place approximately 10 or 20 years later in arbitrary afforestable area where the degree of slope is 27. The prevention effect must be considered in the control of vegetation.

  • PDF

A Study of the Relationship between In-stream Vegetation and Sediment Transport by a Hydraulic Model Experiment (실험수로에서 식물군락에 의한 유사거동 양상에 관한 실험적 고찰)

  • Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.753-762
    • /
    • 2002
  • In-stream vegetation is an essential element of a stream channel. Vegetation plays an important role in flood control and the natural environment in stream channels. This research investigates the relationship between in-stream vegetation and stream changes. This study investigates the distribution characteristic of vegetation in some rivers of Korea. Although there are many physical factors that cause changes to streams, this research verified that in-stream vegetation caused sediment deposition. A hydraulic model experiment was conducted. Tests were conducted in a simulated gravel bed stream (bed slope 1/200) with Phragmites japonica. The average diameter of the bed load used was 0.3 mm and 27 kg were uniformly supplied for 1 hour under same hydraulic conditions. The deposition and scouring as well as the change of flow differed according to the density and arrangement of the Phragmites japonica. In-stream vegetation and stream channel change are closely related because deposition and scouring affects the distribution of vegetation.

Fertilization Effects on Understory Vegetation Biomass and Structure in Four Different Plantations

  • Son, Yowhan;Lee, Mi-Hyang;Noh, Nam Jin;Kang, Byeung Hoa;Kim, Kun Ok;Yi, Myong Jong;Byun, Jae Kyung;Yi, Koong
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.520-527
    • /
    • 2007
  • Biomass and species diversity of understory vegetation after fertilization were studied for 28-year-old Quercus acutissima plantation (MQA), 29-year-old Pinus densiflora plantation (MPD), 8-year-old Betula platyphylla var. japonica plantation after coal reclamation (YBP), and 4-year-old Pinus densiflora plantation after forest fire (YPD) in central Korea. Nitrogen + phosphorus + potassium (6:4:1) fertilizer was applied for 3 years from 2004. Thereafter photosynthetically active radiation (PAR) and understory species richness and diversity were measured in late July-early August 2006. PAR (${\mu}mol\;m^{-2}S^{-1}$) was higher at the fertilization treatment (100.9) than at the control (67.0) for MQA while was lower at the fertilization treatment (156.5) than at the control (268.7) for MPD. Total understory biomass (t $ha^{-1}$) was lower at the fertilization plot (1.8) than at the control plot (3.0) for YPD, however, there were no differences in biomass between fertilization and control plots for MQA, MPD and YBP. Total species number of understory vegetation was higher for fertilization than for control at MPD (47 vs. 45) and YPD (21 vs. 13), and was higher for mature plantations (33 vs. 37 for MQA and 47 vs. 45 for MPD) than for young plantations (16 vs. 16 for YBP and 21 vs. 13 for YPD). Species richness and diversity were higher at the fertilization treatment than at the control for MQA, YBP, and YPD while were lower at the fertilization treatment than at the control for MPD, however, the differences were not statistically significant. Our results indicate that there were no consistent patterns in light conditions, biomass and species richness and diversity of understory vegetation following fertilization. More detailed long-term studies with different fertilizer applications would be necessary to conclude the influence of fertilization on understory vegetation in the region.

Effects of Vegetation Recovery for Surface Runoff and Soil Erosion in Burned Mountains, Yangyang (양양 산불지역 지표유출 및 토양침식에 대한 식생회복의 영향)

  • Shin, Seung Sook;Park, Sang Deog;Cho, Jae Woong;Lee, Kyu Song
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.393-403
    • /
    • 2008
  • While characteristics of topography, soil, and vegetation coverage were surveyed, also surface runoff and soil erosion for each rainfall event were measured to analyze effect of change of land cover conditions in mountain areas, Yangyang, directly after wildfire. Fifteen rainfall events were taken in total during the survey period. The result of this survey appeared that the amount of surface runoff and soil erosion are a great difference between plots with rapidly recovered vegetation and bare plots after wildfire. The burned plots where vegetation recovered rapidly generated two times or more of surface runoff and soil erosion than control plots, as burned plots with bare soil showed about ten times of surface runoff and sediment than control plots. The result of correlation analysis between main parameters of the surface runoff and soil erosion presented that rainfall factors and vegetation factors had significant effects on runoff and soil erosion. The sensitivity of runoff and soil erosion showed specially high correlation with vegetation indices. If the land surface disturbed by wildfire are recovered by natural vegetation as time passes, runoff and soil erosion may be decreased gradually. Because runoff and soil erosion in the areas with rare vegetation or bare soil are generated continuously, the discriminated mediation strategies would be established as condition of each region.

Financial Analysis of Vegetation Control for Sustainable Production of Songyi (Tricholoma matsutake) in Korea (송이생산(生産)을 지속가능(持續可能)하게 하기 위한 소나무림내(林內) 식생정리(植生整理) 작업(作業)의 경제성(經濟性) 분석(分析))

  • Koo, Chang Duck;Bilek, E.M.
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.519-527
    • /
    • 1998
  • An economic study of vegetation control to increase production of Songyi (Korean name far pine mushroom, matsutake, Tracholoma matsutake (S. Ito & Imai) Sing.) in red pine (Panes densiflora) stands in Korea was undertaken. In Korea, Songyi grows only in red pine stands. Harvest of this mushroom provides a significant income source to rural people in Korea yielding exports of US$20 million to US$80 million per year. However, hypogeous Songyi colonies and the mushroom production are declining, partly because shade tolerant species are succeeding the shade intolerant red pine. Past research says that it is possible to deep Songyi production increasing by controlling under-story vegetation. But few people are wilting to invest in the necessary control. Our analysis found that the economics of vegetation control appear to be quite favorable, showing an internal rate of return (IRR) of 20.7 percent in 15 years. However, positive returns do not occur for at least eight years and even then, the returns may not appear to the landowner to be a result of vegetation control efforts only because the mushroom production has been greatly variable depending on weather conditions. In a sensitivity analysis, it was found that the number of circular mushroom colonies was critically important for the cash flow. Results of this analysis are also sensitive to assumptions about annual growth length(0.16m radial growth=1.0m/circular length growth) of Songyi colony. However, the primary goal of vegetation control should be to keep the young colonies growing. Further research in the behavior of hypogeous Songyi colonies after vegetation control would help to improve our confidence in the results.

  • PDF

Estimation of evapotranspiration using NOAA-AVHRR data (NOAA-AVHRR data를 이용한 증발산량추정)

  • Shin, Sha-Chul;Sawamoto, Masaki;Kim, Chi-Hong
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.71-80
    • /
    • 1995
  • The purpose of this study is to estimate evapotranspiration and its spatial distribution using NOAA-AVHRR data. Evapotranspiration phenomena are exceedingly complex. But, factors which control evapotranspiration can be considered that these are reflected by conditions of the vegetation. To evaluate the vegetation condition as a fixed quantity, the NDVI(Normalized Difference Vegetation Index) calculated from NOAA data is utilized. In this study, land cover classification of the Korean peninsula using property of NDVI is performed. Also, from the relationship between evapotranspiration and NDVI histograms, evapotranspiration and its distribution of the Han River basin are estimated.

  • PDF

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.