DOI QR코드

DOI QR Code

Effects of Vegetation Recovery for Surface Runoff and Soil Erosion in Burned Mountains, Yangyang

양양 산불지역 지표유출 및 토양침식에 대한 식생회복의 영향

  • 신승숙 (강릉대학교 대학원 토목공학과) ;
  • 박상덕 (강릉대학교 토목공학과) ;
  • 조재웅 (강릉대학교 대학원 토목공학과) ;
  • 이규송 (강릉대학교 생물학과)
  • Received : 2008.03.14
  • Accepted : 2008.04.12
  • Published : 2008.07.31

Abstract

While characteristics of topography, soil, and vegetation coverage were surveyed, also surface runoff and soil erosion for each rainfall event were measured to analyze effect of change of land cover conditions in mountain areas, Yangyang, directly after wildfire. Fifteen rainfall events were taken in total during the survey period. The result of this survey appeared that the amount of surface runoff and soil erosion are a great difference between plots with rapidly recovered vegetation and bare plots after wildfire. The burned plots where vegetation recovered rapidly generated two times or more of surface runoff and soil erosion than control plots, as burned plots with bare soil showed about ten times of surface runoff and sediment than control plots. The result of correlation analysis between main parameters of the surface runoff and soil erosion presented that rainfall factors and vegetation factors had significant effects on runoff and soil erosion. The sensitivity of runoff and soil erosion showed specially high correlation with vegetation indices. If the land surface disturbed by wildfire are recovered by natural vegetation as time passes, runoff and soil erosion may be decreased gradually. Because runoff and soil erosion in the areas with rare vegetation or bare soil are generated continuously, the discriminated mediation strategies would be established as condition of each region.

양양 산불 피해 지역 당해년도의 극심한 지표 변화에 따른 지표유출 및 토양침식을 분석하기 위해 산불 산지사면에 10개의 소규모 조사구를 설치하여, 지형, 토양, 식생, 강우사상별 유출 및 토양침식량을 측정하였다. 조사는 총 15개 단일강우사상을 기준하여 이루어졌다. 산불이후 식생회복이 빠른 지역과 그렇지 않은 사면의 유출 및 토양침식량은 매우 큰 차이를 보였다. 식생회복이 빠른 조사구들은 대조구보다 약 2배 많은 평균 유출량 및 토양침식량을 나타냈으나, 나지상태 조사구들에서는 대조구의 약 10배 이내의 유출 및 토양침식이 발생되었다. 지표유출 및 토양침식에 대한 주요 인자들과의 상관분석에 의하면 강우인자 및 식생인자는 유출과 토양침식에 상당한 영향을 미쳤다. 유출 및 토양침식 민감도는 식생지수들과 높은 상관성을 보였다. 산불에 의해 교란된 지표식생이 시간이 경과함에 따라 회복되고, 산불초기에 다량의 토사유출이 발생된 이후 사면 토양의 안정화에 따라 전반적으로 유출 및 토양침식량이 감소하였다. 그러나 식생회복이 안되거나, 식생회복이 더딘 지역은 지속적으로 유출 및 토양침식이 발생하기 때문에 산불 지역별로 차별화된 대응전략 수립이 필요하다.

Keywords

References

  1. 김정찬, 고희재, 이승렬, 이창범, 최성자, 박기화(2001) 강릉-속초 지질도폭 설명서. 한국지질자원연구원
  2. 박상덕 등(2001) 강원도 산불지역 재해의 저감대책 수립. 연구보고서 11-1310148-000088-01, 행정자치부 국립방재연구소, pp. 205-217
  3. 박상덕 등(2005) 산지의 토양침식모형(SEMMA) 실용화 연구. 연구보고서 11-1660030-00035-01, 소방방재청 국립방재연구소, pp. 69-87
  4. 박상덕, 신승숙, 심관섭(2002) 산불지역 토사유출에 대한 와지의 기능에 관한 연구. 방재연구논문집, 제4권, 제1호, pp. 121-130
  5. 박상덕, 신승숙, 이규송(2005) 산불지역의 유출 및 토양침식 민감도. 한국수자원학회논문집, 한국수자원학회, 제38권, 제1호, pp. 60-61
  6. 이규송, 박상덕(2005) 산화적지에서 지상부 식생구조와 표토에 분포하는 세근의 관계. 한국생태학회지, 한국생태학회, 제28권, 제3호, pp. 149-156
  7. 이규송, 정연숙, 김석철, 신승숙, 노찬호, 박상덕(2004) 동해안 산불 피해지에서 산불 후 경과 년 수에 따른 식생 구조의 발달. 한국생태학회지, 한국생태학회, 제27권 제2호, pp. 99-106
  8. Bennett, J.P. (1974) Concepts of mathematical modeling of sediment yield. Water Resources Research, Vol. 10, pp. 485-492 https://doi.org/10.1029/WR010i003p00485
  9. Buchanan, J.R., Yoder D.C., Denton, H.P., and Smoot, J.L. (2002) Wood ships as a soil cover for construction sites with steep slopes. Appl. Eng. Agric. Vol. 18, pp. 679-683
  10. Cerdan, O., Bissonnais, Y., Souchère, V., Martin, P., and Lecomte, V. (2002) Sediment concentration in interrill flow: interactions between soil surface conditions, vegetation and rainfall. Earth Surface Processes and Landforms, Vol. 27, pp. 193-205 https://doi.org/10.1002/esp.314
  11. Chien, N., Wan, Z., and McNown, J.S. (1999) Mechanics of sediment transport. ASCE Press, pp. 49-58
  12. Florinsky, I.V. and Kuryakova, G.A. (1996) Influence of topography on some vegetation cover properties. CATENA, Elsevier, Vol. 27, pp. 123-141 https://doi.org/10.1016/0341-8162(96)00005-7
  13. Foster, G.R. (1982) Modelling the erosion process. ASAE Monograph, Vol. 5. ASAE, Saint Joseph, Michigan, pp. 297-380
  14. Hartanto, H., Prabhu, R., Widayat, A.S.E., and Asdak, C. (2003) Factors affecting runoff and soil erosion: plot-level soil loss monitoring for assessing sustainability of forest management. Forest Ecology and Management, Elsevier, Vol. 180, pp. 361-374 https://doi.org/10.1016/S0378-1127(02)00656-4
  15. Hudson, N.W. (1971) Soil Conservation. Batsford Ltd, London
  16. Johansen, M.P., Hakonson, T.E., and Breshears, D.D. (2001) Postfire runoff and erosion from rainfall simulation: contrasting forests with shrublands and grasslands. Hydrological Processes, Vol. 15, pp. 2953-2965 https://doi.org/10.1002/hyp.384
  17. Kim, C., Shin, K., Joo, K.Y, Lee, K.S. Shin, S.S., and Choung, Y. (2008) Effects of soil conservation measures in a partially vegetated area after forest fires. Science of the Total Environment, Vol. 399, pp. 158-164 https://doi.org/10.1016/j.scitotenv.2008.03.034
  18. Kirkby, M.J. (1980b) Modelling water erosion processes. In M.J. Kirkby and R.P.C. Morgan(eds), Soil erosion. Chichester, Wiley, pp. 183-216
  19. Klute, A. and Dirksen, C. (1986) Hydraulic conductivity and diffusivity: Laboratory methods. Methods of Soil Analysis, edited by Klute, A., Agronomy Monograph Series No. 9 ASA and SSSA, Madison, Wisconsin, pp. 687-734
  20. McCool, D.K., Brown, L.C., Foster, G.R., Mutchler, C.K., and Meyer, L.D. (1989) Revised slope length factor for the Universal Soil Loss Equation. Trans. Am. Soc. Agric. Eng., Vol. 32, No. 5, pp. 1571-1576 https://doi.org/10.13031/2013.31192
  21. Moffet, C.A., Pierson, F.B., Robichaud, P.R., Spaeth, K.E., and Hardegree, S.P. (2007) Modeling soil erosion on steep sagebruch rangeland before and after prescribed fire. CATENA, Elsevier, Vol. 71, pp. 218-228 https://doi.org/10.1016/j.catena.2007.03.008
  22. Morgan, R.P.C. (1996) Soil Erosion and Conservation. Longman, New York
  23. Nearing, M.A., Foster, G.R., Lane, L.J. and Finkner, S.C. (1989) A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions of the ASAE Vol. 32, pp. 1587-1593 https://doi.org/10.13031/2013.31195
  24. Shakesby, R.A., Blake, W.H., Doerr, S.H., Humphreys, G.S., Wallbrink, P.J., and Chafer, C.J. (2006) Hillslope soil erosion and bioturbation after the Christmas 2001 forest fires near Sydney, Australia. In Owens, P.N. and Collins, A.J.(eds), Soil erosion and sediment redistribution in river catchments: measurement, modelling and management, CABI, pp. 51-61
  25. Soto, B. and Diaz-Fierros, F. (1998) Runoff and soil erosion from areas of burnt scrub: Comparison of experimental results with those predicted by the WEPP model. CATENA, Elsevier, Vol. 31, pp. 257-270. https://doi.org/10.1016/S0341-8162(97)00047-7
  26. Toy, T.J., Foster, G.R., and Renard, K.G. (2002) Soil erosion: Processes, prediction, measurement and control. John Wily & Sons, Inc. New York
  27. Van Dijk, A.I.J.M., Bruijnzeel, L.A., and Rosewell, C.J. (2002) Rainfall intensity-kinetic energy relationships. Journal of Hydrology, Elsevier, Vol. 261, pp. 1-23 https://doi.org/10.1016/S0022-1694(02)00020-3