• 제목/요약/키워드: vegetation change

검색결과 865건 처리시간 0.032초

Signal of vegetation variability found in regional-scale evapotranspiration as revealed by NDVI and assimilated atmospheric data in Asia

  • Suzuki, Rikie;Masuda, Kooiti;Yasunari, Tetsuzo;Yatagai, Akiyo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.685-689
    • /
    • 2002
  • This study focused the relationship between the Normalized Difference Vegetation Index (NDVI) and the evapotranspiration (ET) temporal changes. Especially, the interannual change of the NDVI and ET from 1982 to 2000 at regional to continental scales was highlighted mainly over Asia. Monthly global NDVI data were acquired from Pathfinder AVHRR Land (PAL) data (1$\times$1 degree resolution). The monthly ET was estimated from assimilated atmospheric data provided from National Centers for Environmental Prediction (NCEP) (2.5$\times$2.5 degree resolution), and gridded global precipitation data of CPC Merged Analysis of Precipitation (CMAP) (2.5$\times$2.5 degree resolution). Significant positive correlations were found between the NDVI and ET interannual changes in May and June over western Siberia. Moreover, it was revealed that the most of area in Asia has positive correlation coefficient in May and June. These results delineate that the vegetation activity significantly contributes to the ET interannual change over extensive areas.

  • PDF

드론 초분광 영상과 다중 식생지수를 활용한 태화강 유역 식생변화 분석 (Analysis of vegetation change in Taehwa River basin using drone hyperspectral image and multiple vegetation indices)

  • 김용석
    • 한국환경복원기술학회지
    • /
    • 제24권1호
    • /
    • pp.97-110
    • /
    • 2021
  • Vegetation index information is an important figure that is used in many fields such as landscape architecture, urban planning, and environment. Vegetation may vary slightly in vegetation vitality depending on photosynthesis and chlorophyll content. In this study, a range of vegetation worth preserving in the Taehwa River water system was determined, and hyperspectral images of drones were acquired (August, October), and the results were presented through DVI(Normalized Defference Vegetation Index), EVI(Enhanced Vegetation Index), PRI(Photochemical Reflectance Index), ARI (Anthocyanin Reflectance Index) index analysis. In addition, field spectral data and VRS-GPS(Virtual Reference System-GPS) surveys were performed to ensure the quality and location accuracy of the spectral band. As a result of the analysis, NDVI and EVI showed low vegetation vitality in October, -0.165 and -0.085, respectively, and PRI and ARI increased to 0.011 and 7.588 in October, respectively. For general vegetation vitality, it was suggested that NDVI and EVI analysis were effectively performed, and PRI and ARI were thought to be effective in analyzing detailed characteristics of plants by spectral band. It is expected that it can be widely used for park design and landscape information modeling by using drone image information construction and vegetation information.

Geostatistical analyses and spatial distribution patterns of tundra vegetation in Council, Alaska

  • Park, Jeong Soo;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • 제37권2호
    • /
    • pp.53-60
    • /
    • 2014
  • The arctic tundra is an important ecosystem in terms of the organic carbon cycle and climate change, and therefore, detailed analysis of vegetation distribution patterns is required to determine their association. We used grid-sampling method and applied geostatistics to analyze spatial variability and patterns of vegetation within a two-dimensional space, and calculated the Moran's I statistics and semivariance to assess the spatial autocorrelation of vegetation. Spatially autocorrelated vegetation consisted of moss, Eriophorum vaginatum, Betula nana, and Rubus chamaemorus. Interpolation maps and cross-correlograms revealed spatial specificity of Carex aquatilis and a strong negative spatial correlation between E. vaginatum and C. aquatilis. These results suggest differences between the species in water requirements for survival in the arctic tundra. Geostatistical methods could offer valuable information for identifying the vegetation spatial distribution.

Satellite monitoring of land and vegetation and its potential application in urban sustainability

  • Feng, Xue-zhi;Ramadan, Elnazir
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.78-81
    • /
    • 2003
  • The present study illustrates a method for monitoring the urban vegetation around Shaoxing city, Monitoring spatiotemporal changes in urban areas will become increasingly important as the number and proportion of urban residents continues to increase. The synoptic view of urban land cover provided by satellite and airborne sensors is an important complement to in situ measurements of physical, environmental and socioeconomic variables in urban settings. The results obtained have revealed a notable change in the vegetation cover in and around the City premises. In this study, we discussed methodology for measurement of urban vegetation and vegetation distributions based on band ratioing in Shaoxing city using Land sat TM imageries. A systematic analysis of the spatiotemporal dynamics of vegetation in urban areas is required to ensure a healthy sustainable environment.

  • PDF

Vegetation Classification Using Seasonal Variation MODIS Data

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Son, Yo-Whan;Kojima, Toshiharu;Muraoka, Hiroyuki
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.665-673
    • /
    • 2010
  • The role of remote sensing in phenological studies is increasingly regarded as a key in understanding large area seasonal phenomena. This paper describes the application of Moderate Resolution Imaging Spectroradiometer (MODIS) time series data for vegetation classification using seasonal variation patterns. The vegetation seasonal variation phase of Seoul and provinces in Korea was inferred using 8 day composite MODIS NDVI (Normalized Difference Vegetation Index) dataset of 2006. The seasonal vegetation classification approach is performed with reclassification of 4 categories as urban, crop land, broad-leaf and needle-leaf forest area. The BISE (Best Index Slope Extraction) filtering algorithm was applied for a smoothing processing of MODIS NDVI time series data and fuzzy classification method was used for vegetation classification. The overall accuracy of classification was 77.5% and the kappa coefficient was 0.61%, thus suggesting overall high classification accuracy.

SWAT 모형을 이용한 기후와 식생 활력도 변화가 수자원에 미치는 영향 평가 (Assessment of Climate and Vegetation Canopy Change Impacts on Water Resources using SWAT Model)

  • 박민지;신형진;박종윤;강부식;김성준
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.25-34
    • /
    • 2009
  • The objective of this study is to evaluate the future potential climate and vegetation canopy change impact on a dam watershed hydrology. A $6,661.5\;km^2$ dam watershed, the part of Han-river basin which has the watershed outlet at Chungju dam was selected. The SWAT model was calibrated and verified using 9 year and another 7 year daily dam inflow data. The Nash-Sutcliffe model efficiency ranged from 0.43 to 0.91. The Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model3 (CGCM3) data based on Intergovernmental Panel on Climate Change (IPCC) SRES (Special Report Emission Scenarios) B1 scenario was adopted for future climate condition and the data were downscaled by artificial neural network method. The future vegetation canopy condition was predicted by using nonlinear regression between monthly LAI (Leaf Area Index) of each land cover from MODIS satellite image and monthly mean temperature was accomplished. The future watershed mean temperatures of 2100 increased by $2.0^{\circ}C$, and the precipitation increased by 20.4 % based on 2001 data. The vegetation canopy prediction results showed that the 2100 year LAI of deciduous, evergreen and mixed on April increased 57.1 %, 15.5 %, and 62.5% respectively. The 2100 evapotranspiration, dam inflow, soil moisture content and groundwater recharge increased 10.2 %, 38.1 %, 16.6 %, and 118.9 % respectively. The consideration of future vegetation canopy affected up to 3.0%, 1.3%, 4.2%, and 3.6% respectively for each component.

MODIS NDVI 시계열 패턴 변화를 이용한 산림식생변화 모니터링 방법론 (Method of Monitoring Forest Vegetation Change based on Change of MODIS NDVI Time Series Pattern)

  • 정명희;이상훈;장은미;홍성욱
    • Spatial Information Research
    • /
    • 제20권4호
    • /
    • pp.47-55
    • /
    • 2012
  • 정규식생지수(NDVI)는 식생자원을 모니터링할 수 있도록 설계된 식생지수(VI-Vegetation Index) 중 하나로 여러 응용 분야에서 가장 많이 사용되고 있는 지수이다. 산림 분야에서도 NDVI가 많이 활용되고 있는데 본 논문에서는 산림 변화 모니터링을 위해 MODIS NDVI를 활용하는 방법론이 연구되었다. 특정 시점을 기준으로 NDVI 값을 비교 및 분류하여 변화를 탐지하는 방법은 기계나 기상상태의 영향으로 자료의 정확성이 떨어질 수 있고 장기적인 변화를 탐지하는데도 어려움이 있다. 이러한 점을 고려하여 본 논문에서는 하모닉 모형을 이용하여 NDVI 시계열 자료를 통해 NDVI 패턴을 고려하는 방법론을 제시하였다. 먼저 하모닉 모형을 적용하여 미관측 자료나 자료의 오류를 보정한 NDVI 시계열 자료를 재구축하고 추정된 하모닉 요소의 모수를 기준으로 장기적 패턴을 통해 식생의 변화를 모니터링할 수 있다. 제안된 방법은 한반도 지역의 2009년 8월 21일부터 2011년 9월 6일까지 총 49개의 MODIS NDVI 시계열 자료에 적용하여 모형의 유용성을 입증하였다.

Studies of Vegetation Structure Analysis and Vegetation Transition over 25 years of Evergreen Broad-leaved Forest in Hong-Do Island

  • Lee, Sung-Je;Kim, Ji-Tae;Ahn, Young-Hee
    • 한국환경과학회지
    • /
    • 제23권3호
    • /
    • pp.335-357
    • /
    • 2014
  • This study aims at classifying and interpreting on the vegetation structure and the vegetation transition over 25 years (between 1986 and 2010), and the correlation with the change of some conditions (the vegetation height and coverage on each layer and the climate factors as WI, CI, mean annual temperature, mean annual total precipitation etc.) in the Evergreen Broad-Leaved Forest,, Hong-Do island. The EBLF is classified into five units of vegetation (Hedera rhombea-Machilus thunbergii community (M-M comm.), Castanopsis sieboldii forest (Machilus japonica-Castanopsis sieboldii community; Raphiolepis indica var. umbellata-C. sieboldii community), community (Qa comm.), Carpinus turczaninovii community (Ct comm.), Camellia japonica stand (Cj stand)). The vegetation transition by CCA had high correlation with the height and coverage on each layer and the climate factors, and it did the succession (transition) that the M-M comm. (2010) from Mallotus japonicus community Machilus thunbergii community Carpinus coreana community (Cc comm.) Aucuba japonica community (Aj comm.) Trachelos permum asiaticum var. intermedium-Quercus acuta community (TQ comm.) (1986), the communities of C. sieboldii forest (2010) from Aj comm. TQ comm. Raphiolepis umbellata-Camellia japonica community (RC comm.) (1986), the Qa comm. (2010) from Ardisia japonica-Castanopsis sieboldii community (AC comm.) and TQ comm. (1986), the Ct comm. (2010) from Cc comm. RC comm. Aj comm. Quercus serrata community and the Cj stand (2010) from AC comm. (1986). the height and coverage on each layer are also changed.

식생지수에 의한 경관파편화의 해석기법 (The Analysis Method of Landscape Fragmentation using Normalized Difference Vegetation Index)

  • 정종철
    • 한국지리정보학회지
    • /
    • 제2권3호
    • /
    • pp.16-22
    • /
    • 1999
  • 생물서식지의 다양한 공간구조는 생물의 종 다양성과 밀접한 관계를 가지고 있다. 인구의 증가, 농업의 발달, 그리고 도시의 발전은 최근에 다양한 경관의 변화를 가져왔다. 이러한 경관의 변화는 생태적 구성인자의 서식지 감소와 파편화(fragmentation)를 초래하였다. 본 연구에서는 Landsat TM을 이용하여 식생지수를 산출하고 이를 식생 패치의 경계길이 대 면적 (perimeter : area, P/A ratio), Shape Index(SI), 프렉탈 디멘죤(D)에 의해 추출한 파편화지수를 분석하였다. NDVI에 의한 경관파편화의 분석은 0.5~1의 구간 값을 이용하는 것이 가장 파편화를 용이하게 구분할 수 있음을 알 수 있었다. 또한, 서울 경기지역의 식생 파편화는 프렉탈 디멘죤에 의해 구분할 때 가장 효과적으로 식생 패치의 파편화를 구분해 낼 수 있음을 알 수 있었다. 향후 동일지역에 대한 식생 패치의 시계열적인 분석과 다양한 토지이용에 대한 식생 파편화의 분석을 비교 연구하여 식생 보전과 생물다양성의 전략을 제시할 수 있을 것이다.

  • PDF

골채채취 후 수변환경 변화와 사주 내 식생이입 (Riparian Environment Change and Vegetation Immigration in Sandbar after Sand Mining)

  • 공학양;김세미;이재윤;이재안;조형진
    • 한국물환경학회지
    • /
    • 제32권2호
    • /
    • pp.135-141
    • /
    • 2016
  • This study investigated changes of hydrology, soil characteristics, riparian vegetation communities, and geomorphology in sandbars before and after sand-mining to determine the effect of sand-mining at upstream of Guemgang and Bochungcheon streams in Korea. Sand-mining events affected the mining area. They supplied organic matters and nutrients during flood. Sediment deposition caused soil texture change and expansion of vegetation area. However, riverbeds were stabilized after the disturbance. According to the analyses of aerial photographs, the vegetation area was significantly expanded in both dam-regulated streams and dam-unregulated streams after sand-mining. Willow shrubs advanced in disturbed area at an average of 10 years after sand-mining. It took willows trees 10.6 years to become dominant communities. Therefore, it took a total of 20.6 years for new riparian forest to form in sandbar after sand-mining. Our results confirmed that stream flow condition were dependent on vegetation recruitment in dam-regulated streams and dam-unregulated streams. For willow recruitment in unregulated streams, calculation of water level below dimensionless bed shear stress is important because low water level variation is a limiting factor of vegetation recruitment.