• Title/Summary/Keyword: vegetated area

Search Result 83, Processing Time 0.03 seconds

Analysis of the Changes of the Vegetated Area in an Unregulated River and Their Underlying Causes: A Case Study on the Naeseong Stream

  • Lee, Chanjoo;Kim, Donggu
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.229-245
    • /
    • 2018
  • This study aims to investigate the changes in the riparian vegetated area in the Naeseong stream, an unregulated river, in order to analyze the main factors leading to these changes. For this purpose, the land surface cover in the channel area of the Naeseong stream was classified into 9 categories using past aerial photographs collected between 1970 and 2016, which recorded the long-term changes of the Naeseong stream. The increase or decrease in the vegetated area was calculated for each category using a pair of before and after images. The changes in the vegetated area were divided into 6 periods: the unvegetated channel period (1970 - 1980), the first rapid increase (1980 - 1986), the period of decrease due to flood (1986 - 1988), the period of repetitive man-induced disturbance and vegetation increase (1988 - 2008), the period of gradual vegetation increase (2008 - 2013), and the period of second rapid increase (2013 - 2016). Multiple regression analysis was performed using independent variables representing hydrology, climate, and geomorphology. The major variables found to be involved in the changes in the vegetated area of the Naeseong stream were the discharge during June - July, channel width, and temperature during April - June. Among the three variables, discharge and temperature were respectively the main independent variables in the downstream and the upstream reaches as per a single variable model. Channel width was the variable that distinguished the upstream and downstream reaches of the stream. The implication of the long-term increase in the vegetated area in the Naeseong stream was discussed based on the result of this study.

Analytic Model for Concentration Deficit Profile Caused by a Large Vegetated Area (녹지의 대기정화효과 분석을 위한 해석적 대기확산모델의 유도)

  • 김석철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.539-544
    • /
    • 2000
  • A simple analytic model is proposed here to analyze the concentration deficit field caused by a large area of vegetated area. With non-dimensional deposition velocity chosen as small parameter, the regular perturbation method is exploited to derive the mass balance equation and the dynamic equations for the concentration deficit field, Analytic solutions to those equations are obtained in a closed form for several cases of interest, assuming that the concentration field is stationary and the plume can be nicely approximated as Gaussian for a point source. The results suggest that quite a negligible fraction (less than 1%) of the gaseous air pollutants emitted into the air is removed by the vegetated area of which width is 4 km in wind-wise direction, the typical dimension of the Restricted Development Zones around the metropolitan regions in South Korea.

  • PDF

Numerical Analysis for Wave Propagation with Vegetated Coastal Area (연안해역에서의 수변식생에 의한 파란변형에 관한 수치해석)

  • LEE SEONG-DAE
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.63-68
    • /
    • 2006
  • Recently, it has been widely recognized that coastal vegetations may have great value in supporting fisheries, protecting from wave attack, stabilizing the sea bed and maintaining good scenery. Hydrodynamic factors play a major role in the functions of water quality and ecosystems. However, the studies on physical and numerical process of wave propagation are few and far behind compared to those on the hydrodynamic roles of coastal vegetations. In general, Vegetation flourishing along the coastal areas attenuates the incident waves, through momentum exchange between stagnated water mass in the vegetated area and rapid mass in the un-vegetated area. This study develops a numerical model for describing the wave attenuation rate in the complex topography with the vegetation area. Based on the numerical results, the physical properties of the wave attenuation are examined under various wave, geometric and vegetation conditions. Through the comparisons of these results, the effects of the vegetation properties, wave properties and model parameters such ac the momentum exchange coefficient have been clarified.

Influencing Degree to the Air Temperature of Stratification in the Urban Green Space (도시녹지의 계층구조가 기온에 미치는 영향)

  • 윤용한;김원태
    • Asian Journal of Turfgrass Science
    • /
    • v.16 no.2
    • /
    • pp.107-114
    • /
    • 2002
  • In this study, We measured air temperature in a vegetated area to investigate if stand types and height affect air temperature. With the measured data, we analyzed the relation-ships between air temperature vs. ground cover type, vegetated area, stand structure, stand density, and tree volume by regression analysis. The results show that the paved area and open field have higher air temperatures than the vegetated area and water-related areas. Among the stand types, the stand with overstory and sub-overstory showed relatively low are temperature. The stand with overstory had lower air temperature than the stand with sub-overstory. Increasing stand density was effective for lowering air temperature.

Flood Stage Evaluation for Vegetated Models in River Scales (하천규모에 따른 식생모델의 홍수위 검토)

  • Lee, Jong-Seok;Kim, Byeong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.509-518
    • /
    • 2010
  • This study aims to evaluate for flood stage on vegetated patterns by clearance space rate (CSR) using the numerical models divided into large, medium and small river in river scales with watershed area or design flood discharge. Using the HEC-RAS (1D) and RMA-2 (2D) numerical models, evaluated results of the design flood stages before vegetated modeling of these rivers which CSR in the 1D are obtained over 100% at all points in large river and medium river of except upper part 2 sections, but small river is showed about average 46.0%. It is judge that evaluated results in the 2D are obtained average 101.5% in large river, 96.7% in medium river, 71.1% in small, respectively and because of 1D mainly used to formulate of the river's master plan. However, after vegetated modeling, CSR in case of 1D showed with 91.8% in large river, 74.2% and 38.3% in medium and small rivers, respectively and 2D showed with 95.5% in large river, 86.72 and 37.0% in medium and small rivers, respectively. It is estimate that evaluated results using the 2 numerical models by the vegetated modeling are less affected the CSR for large river in a large area more than the cross section area in medium and small rivers.

Numerical Analysis for Wave Propagation and Sediment Transport with Coastal Vegetation (연안식생에 의한 표사이동 특성에 관한 수치해석)

  • Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.18-24
    • /
    • 2007
  • The environmental value of coastal vegetation has been widely recognized. Coastal vegetation such as reed forests and seaweed performs several useful functions, including maintaining water quality, supporting fish (and, thus, fisheries), protecting beaches and land from wave attack, stabilizing sea beds and providing scenic value. However, studies on the physical and numerical process of wave propagation, sediment transport and bathymetric change are few and far between compared to those on the hydrodynamic roles of coastal vegetation. In general, vegetation flourishing along the coastal areas attenuates the incident waves through momentum exchange between stagnated water mass in the vegetated area and rapid mass in the un-vegetated area. This study develops a numerical model for describing the wave attenuation and sediment transport in a wave channel in a vegetation area. By comparing these results, the effects of vegetation properties, wave properties and model parameters are clarified.

Regional Geological Mapping by Principal Component Analysis of the Landsat TM Data in a Heavily Vegetated Area (식생이 무성한 지역에서의 Principal Component Analysis 에 의한 Landsat TM 자료의 광역지질도 작성)

  • 朴鍾南;徐延熙
    • Korean Journal of Remote Sensing
    • /
    • v.4 no.1
    • /
    • pp.49-60
    • /
    • 1988
  • Principal Component Analysis (PCA) was applied for regional geological mapping to a multivariate data set of the Landsat TM data in the heavily vegetated and topographically rugged Chungju area. The multivariate data set selection was made by statistical analysis based on the magnitude of regression of squares in multiple regression, and it includes R1/2/R3/4, R2/3, R5/7/R4/3, R1/2, R3/4. R4/3. AND R4/5. As a result of application of PCA, some of later principal components (in this study PC 3 and PC 5) are geologically more significant than earlier major components, PC 1 and PC 2 herein. The earlier two major components which comprise 96% of the total information of the data set, mainly represent reflectance of vegetation and topographic effects, while though the rest represent 3% of the total information which statistically indicates the information unstable, geological significance of PC3 and PC5 in the study implies that application of the technique in more favorable areas should lead to much better results.

Seed Distribution and Burial Properties of Suaeda japonica in Tidal-flat (조간대 내에서 칠면초(Suaeda japonica) 종자의 분포 및 매토 특성)

  • Min, Byeong-Mee
    • The Korean Journal of Ecology
    • /
    • v.28 no.3
    • /
    • pp.141-147
    • /
    • 2005
  • To clarify seed distribution in sediment and its burial properties of Suaeda japonica, the vertical and horizontal distribution of seeds, organic content of sediment, and sediment content delivered by crabs were studied in mud tidal-flat of Walgot-dong, Siheung, Gyeonggi Province, from March 1999 to October 2000. The 94% and 6% of S. japonica seeds were buried under and outside the maternal plant crown, respectively. Organic matter contents of sediment were higher at the area (17%) covered than at the one (8%) uncovered by S. japonica. In the area covered by S. suaeda, organic matter profiles of sediment showed vertical variation from 19% in surface (1 cm depth) to 14% in 6 cm depth. S. japonica seeds buried in sediment decreased from 45% in 2 mm depth to 0% in 12 mm depth. The density of crabs was higher in the vegetated area than in the non-vegetated one. Especially, the density of Cleistostoma was about 8 times higher in the former than in the latter In the vegetated area, the amount of sediment delivered by crabs was estimated to be 2,409 $cm^3{\cdot}m^{-2}$, and this could ascend the height of sediment to 2.4 mm. Consequently, it might be interpreted that plant debris (organic matters) of maternal plants and sediment delivered by crabs made the S. japonica seeds bury well. By relationship between crab distribution and vegetation, it was thought that crabs got a benefit from S. japonica.

Surface Emissivity Derived From Satellite Observations: Drought Index

  • Yoo, Jung-Moon;Yoo, Hye-Lim
    • Journal of the Korean earth science society
    • /
    • v.27 no.7
    • /
    • pp.787-803
    • /
    • 2006
  • The drought index has been developed, based on a $8.6{\mu}m$ surface emissivity in the $8-12{\mu}m$ MODIS channels over the African Sahel region (10-20 N, 13 W-35 W) and the Seoul Metropolitan Area (SMA: 37.2-37.7 N, 126.6-127.2 E). The emissivity indicates the $SiO_2$ strength and can vary interannually by vegetation, water vapor, and soil moisture, as a potential indicator of drought conditions. In a well-vegetated region close to 10 N of the Sahel, the Normalized Difference Vegetation Index (NDVI) showed high sensitivity, while the emissivity did not. On the other hand, the NDVI experienced negligible variability in a poorly vegetated region near 20 N, while the emissivity reflected sensitively the effects of atmospheric water vapor and soil moisture conditions. Seasonal variations of the emissivity (0.94-0.97) have been examined over the SMA during the 2003-2004 period compared to NDVI (or Enhanced Vegetation Index; EVI). Here, the dryness was more severe in urban area with less vegetation than in suburban area; the two areas corresponded to the north and south of the Han river, respectively. The emissivity exhibiting a significant spatial correlation of ${\sim}0.8$ with the two indices can supplement their information.

Assesment of Hydraulic Influence by Tree Planting in River (수목 식재에 따른 하천내 수리학적 영향 평가)

  • Kwon, Taek-Hoon;Choi, Seung-Yong;Han, Kun-Yeun
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.5
    • /
    • pp.511-525
    • /
    • 2010
  • Understanding of the hydraulics of flow over vegetation is very important to support the management of fluvial processes. The objective of this study is to assess the effects of hydraulic influence by tree planting in a compound channel with vegetated floodplain. This study analyzes the influence of tree planting on hydraulic features in Young-river in Munkyung city using HEC-RAS and RMA-2 model. The study results showed that there is a rise in water surface elevation and decrease in velocity near vegetated area. It is also ascertained that only negligible effects was seen within the feasible range of freeboard for the existing levees. However, as hydraulic features can vary depending on the aspect of flood inundation during each flood period, it is necessary to accumulate data through continuous data collecting.