• Title/Summary/Keyword: vector optimization

Search Result 471, Processing Time 0.033 seconds

A New Support Vector Machine Model Based on Improved Imperialist Competitive Algorithm for Fault Diagnosis of Oil-immersed Transformers

  • Zhang, Yiyi;Wei, Hua;Liao, Ruijin;Wang, Youyuan;Yang, Lijun;Yan, Chunyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.830-839
    • /
    • 2017
  • Support vector machine (SVM) is introduced as an effective fault diagnosis technique based on dissolved gases analysis (DGA) for oil-immersed transformers with maximum generalization ability; however, the applicability of the SVM is highly affected due to the difficulty of selecting the SVM parameters appropriately. Therefore, a novel approach combing SVM with improved imperialist competitive algorithm (IICA) for fault diagnosis of oil-immersed transformers was proposed in the paper. The improved ICA, which is proved to be an effective optimization approach, is employed to optimize the parameters of SVM. Cross validation and normalizations were applied in the training processes of SVM and the trained SVM model with the optimized parameters was established for fault diagnosis of oil-immersed transformers. Three classification benchmark sets were studied based on particle swarm optimization SVM (PSOSVM) and IICASVM with four multiple classification schemes to select the best scheme for transformer fault diagnosis. The results show that the proposed model can obtain higher diagnosis accuracy than other methods. The comparisons confirm that the proposed model is an effective approach for classification problems.

Vector Heuristic into Evolutionary Algorithms for Combinatorial Optimization Problems (진화 알고리즘에서의 벡터 휴리스틱을 이용한 조합 최적화 문제 해결에 관한 연구)

  • Ahn, Jong-Il;Jung, Kyung-Sook;Chung, Tae-Choong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1550-1556
    • /
    • 1997
  • In this paper, we apply the evolutionary algorithm to the combinatorial optimization problem. Evolutionary algorithm useful for the optimization of the large space problem. This paper propose a method for the reuse of wastes of light water in atomic reactor system. These wastes contain several reusable elements, and they should be carefully selected and blended to satisfy requirements as an input material to the heavy water atomic reactor system. This problem belongs to an NP-hard like the 0/1 knapsack problem. Two evolutionary strategies are used as approximation algorithms in the highly constrained combinatorial optimization problem. One is the traditional strategy, using random operator with evaluation function, and the other is heuristic based search that uses the vector operator reducing between goal and current status. We also show the method which perform the feasible test and solution evaluation by using the vectored knowledge in problem domain. Finally, We compare the simulation results of using random operator and vector operator for such combinatorial optimization problems.

  • PDF

Fast Training of Structured SVM Using Fixed-Threshold Sequential Minimal Optimization

  • Lee, Chang-Ki;Jang, Myung-Gil
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.121-128
    • /
    • 2009
  • In this paper, we describe a fixed-threshold sequential minimal optimization (FSMO) for structured SVM problems. FSMO is conceptually simple, easy to implement, and faster than the standard support vector machine (SVM) training algorithms for structured SVM problems. Because FSMO uses the fact that the formulation of structured SVM has no bias (that is, the threshold b is fixed at zero), FSMO breaks down the quadratic programming (QP) problems of structured SVM into a series of smallest QP problems, each involving only one variable. By involving only one variable, FSMO is advantageous in that each QP sub-problem does not need subset selection. For the various test sets, FSMO is as accurate as an existing structured SVM implementation (SVM-Struct) but is much faster on large data sets. The training time of FSMO empirically scales between O(n) and O($n^{1.2}$), while SVM-Struct scales between O($n^{1.5}$) and O($n^{1.8}$).

  • PDF

Development of Stamping Process Optimization System through the Integration of Blank Design and Nesting (블랭크 설계와 배치의 일체화를 통한 스탬핑 공정 최적화 시스템의 개발)

  • 심현보;박종규
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.615-622
    • /
    • 2003
  • In the automobile industry, the design of optimal blank shape becomes a significant part of the stamping. It provides many evident advantages, sush as enhancement of formability, reduction of material cost and product development period. However, the nesting process, required for the optimal usage of materials in the blanking becomes more complicated as the blank shape becomes complicated, like most optimal blank shape. In this study, stamping process optimization system for the optimal usage of material has been developed through the integration of optimal blank design and optimal nesting. For optimal blank design, a radius vector method, the modified version of the initial nodal velocity method, the past work of the present author, have been proposed. Both the optimal blank design and optimal nesting programs have been developed under the GUI environment for the convenience of engineers. The efficiency of the optimization system has been verified with some chosen problems.

Application of machine learning in optimized distribution of dampers for structural vibration control

  • Li, Luyu;Zhao, Xuemeng
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.679-690
    • /
    • 2019
  • This paper presents machine learning methods using Support Vector Machine (SVM) and Multilayer Perceptron (MLP) to analyze optimal damper distribution for structural vibration control. Regarding different building structures, a genetic algorithm based optimization method is used to determine optimal damper distributions that are further used as training samples. The structural features, the objective function, the number of dampers, etc. are used as input features, and the distribution of dampers is taken as an output result. In the case of a few number of damper distributions, multi-class prediction can be performed using SVM and MLP respectively. Moreover, MLP can be used for regression prediction in the case where the distribution scheme is uncountable. After suitable post-processing, good results can be obtained. Numerical results show that the proposed method can obtain the optimized damper distributions for different structures under different objective functions, which achieves better control effect than the traditional uniform distribution and greatly improves the optimization efficiency.

Design of Robust Support Vector Machine Using Genetic Algorithm (유전자 알고리즘을 이용한 강인한 Support vector machine 설계)

  • Lee, Hee-Sung;Hong, Sung-Jun;Lee, Byung-Yun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.375-379
    • /
    • 2010
  • The support vector machine (SVM) has been widely used in variety pattern recognition problems applicable to recommendation systems due to its strong theoretical foundation and excellent empirical successes. However, SVM is sensitive to the presence of outliers since outlier points can have the largest margin loss and play a critical role in determining the decision hyperplane. For robust SVM, we limit the maximum value of margin loss which includes the non-convex optimization problem. Therefore, we proposed the design method of robust SVM using genetic algorithm (GA) which can solve the non-convex optimization problem. To demonstrate the performance of the proposed method, we perform experiments on various databases selected in UCI repository.

Short-Term Wind Speed Forecast Based on Least Squares Support Vector Machine

  • Wang, Yanling;Zhou, Xing;Liang, Likai;Zhang, Mingjun;Zhang, Qiang;Niu, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1385-1397
    • /
    • 2018
  • There are many factors that affect the wind speed. In addition, the randomness of wind speed also leads to low prediction accuracy for wind speed. According to this situation, this paper constructs the short-time forecasting model based on the least squares support vector machines (LSSVM) to forecast the wind speed. The basis of the model used in this paper is support vector regression (SVR), which is used to calculate the regression relationships between the historical data and forecasting data of wind speed. In order to improve the forecast precision, historical data is clustered by cluster analysis so that the historical data whose changing trend is similar with the forecasting data can be filtered out. The filtered historical data is used as the training samples for SVR and the parameters would be optimized by particle swarm optimization (PSO). The forecasting model is tested by actual data and the forecast precision is more accurate than the industry standards. The results prove the feasibility and reliability of the model.

Hybrid Intelligent System Using PSO/Bacterial Foraging and PID Controller Tuning

  • Kim Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.22-34
    • /
    • 2006
  • o GA-BF approach for improvement of learning and optimization in GA o GA-BF has better response on various test functions o Satisfactory PID controller tuning in AVR, motor vector control systems o Potentially useful in many practically important engineering optimization problems

  • PDF

An Optimization of Ordering Algorithm for Sparse Vector Method (스파스벡터법을 위한 서열산법의 최적화)

  • Shin, Myong-Chul;Lee, Chun-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.189-194
    • /
    • 1989
  • The sparse vector method is more efficient than conventional sparse matrix method when solving sparse system. This paper considers the structural relation between factorized L and inverse of L and presents a new ordering algorithm for sparse vector method. The method is useful in enhancing the sparsity of the inverse of L while preserving the aparsity of matrix. The performance of algorithm is compared with conventional algorithms by means of several power system.

  • PDF