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In this paper, we describe a fixed-threshold sequential 
minimal optimization (FSMO) for structured SVM 
problems. FSMO is conceptually simple, easy to 
implement, and faster than the standard support vector 
machine (SVM) training algorithms for structured SVM 
problems. Because FSMO uses the fact that the 
formulation of structured SVM has no bias (that is, the 
threshold b is fixed at zero), FSMO breaks down the 
quadratic programming (QP) problems of structured 
SVM into a series of smallest QP problems, each involving 
only one variable. By involving only one variable, FSMO 
is advantageous in that each QP sub-problem does not 
need subset selection. For the various test sets, FSMO is as 
accurate as an existing structured SVM implementation 
(SVM-Struct) but is much faster on large data sets. The 
training time of FSMO empirically scales between O(n) 
and O(n1.2), while SVM-Struct scales between O(n1.5) and 
O(n1.8). 
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I. Introduction 

In recent years, there has been a lot of interest in support 
vector machines (SVMs) [1]-[6]. SVMs have empirically been 
shown to give good generalization performance on a wide 
variety of problems such as text categorization [6], spam 
filtering [7], taxonomic text classification [4], learning to rank 
[8], image retrieval [9], and spoken language understanding 
[10]. 

The formulation of SVM is based on a two-class problem; 
hence, SVM is basically a binary classifier. Taskar and others 
presented a discriminative approach to parsing inspired by the 
large-margin criterion underlying SVMs in which the loss 
function is factorized analogous to the decoding process [11]. 
Tsochantaridis and others proposed large-margin models based 
on SVMs for the structured classification problem (structured 
SVM) in general and apply it for multiclass classification, the 
syntactic parsing problem, named entity recognition, 
taxonomic text classification, and sequence alignment [4]. Yue 
and others use structured SVM to globally optimize mean 
average precision (MAP) [8]. 

Chunking is the first decomposition method used in standard 
SVM training [1]. It starts with a random subset (chunk) of 
data which we define as B and trains an initial SVM. Support 
vectors in the chunk are retained while non-support vectors are 
replaced by patterns in N violating the Karush-Kuhn-Tucker 
(KKT) conditions. Then, the SVM is re-trained and the whole 
procedure is repeated. Chunking suffers from the problem that 
all of the support vectors that have been identified still need to 
be trained together at the end of the training process. 

Osuna and others proposed another decomposition algorithm 
that fixes the size of working set B [2]. At each iteration, 
variables corresponding to patterns in N are frozen, while those 
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in B are optimized in a quadratic programming (QP) sub-
problem. After that, a new point in N violating the KKT 
conditions will replace some point in B. The SVM-light 
software [6] follows the same scheme, though with a slightly 
different subset selection heuristic. 

Platt introduced the sequential minimal optimization 
(SMO) algorithm which breaks the original large QP into a 
series of smallest possible QPs, each involving only two 
variables [3]. The first variable is chosen among points that 
violate the KKT conditions, while the second variable is 
chosen so as to have a large increase in the dual objective. By 
involving only two variables, SMO is advantageous in that 
each QP sub-problem can be solved analytically in an 
efficient way, without the use of a numerical QP solver. In 
addition, SMO requires no extra matrix storage at all. Platt 
also introduced fixed-threshold SVM, but did not apply it to 
structured SVM. 

The idea of core vector machines (CVM) was proposed, in 
which the two-category classification problem was formulated 
as an approximate minimum enclosing ball (MEB) problem in 
computational geometry [12]. The resulting algorithm is very 
fast and is especially useful for very large datasets. However, 
the algorithm is an approximation for SVM training that has an 
approximation ratio of (1+e)2. 

Tsochantaridis and others proposed large-margin models 
based on SVMs for the structured classification problem 
(structured SVM) in general and applied it to the syntactic 
parsing problem, named entity recognition, taxonomic text 
classification, and sequence alignment [4]. However, they used 
a standard SVM solver (SVM-light) to solve the dual form of 
structured SVM, despite the fact that structured SVM has no 
bias (that is, the threshold b is fixed at zero). 

Recently, Joachims proposed a joint constraint algorithm for 
linear SVMs which trains in linear time [13]. It is based on an 
alternative formulation of the SVM optimization problem that 
exhibits a different form of sparsity compared to the 
conventional formulation. However, we do not explore it here 
because this method has a high constant. 

In this paper, we describe a fast training algorithm of 
structured SVM called fixed-threshold sequential minimal 
optimization (FSMO). FSMO is conceptually simple, easy to 
implement, and faster than the standard SVM training 
algorithms for structured SVM problems. FSMO uses the fact 
that the formulation of structured SVM has no bias, that is, that 
the threshold b is fixed at zero. Therefore, FSMO breaks the 
QPs of structured SVM into a series of smallest QPs, each 
involving only one variable. By involving only one variable, 
FSMO is advantageous in that each QP sub-problem does not 
need subset selection. 

The rest of this paper is organized as follows. Section II 

describes structured SVM. Section III describes our proposed 
FSMO algorithm for structural SVM. Section IV gives 
application and experimental results. The final section gives 
some concluding remarks. 

II. Structured SVM 

The formulation of standard SVM is based on a two-class 
problem; hence, SVM is basically a binary classifier. 
Tsochantaridis and others proposed large-margin models 
based on SVMs for the structured classification problem 
(structured SVM) [4]. In this section, we briefly describe 
structured SVM. 

1. Support Vector Machines 

Vapnik invented support vector machines. In its simplest, 
linear form, an SVM is a hyperplane that separates a set of 
positive examples from a set of negative examples with 
maximum margin. Margin maximization can be expressed as 
given in [1] as 
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Using a Lagrangian multiplier, this optimization problem can 
be converted into a dual form which is a QP problem, where 
the objective function L1 is solely dependent on a set of 
Lagrangian multipliers α : 
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There is a one-to-one relationship between each 
Lagrangian multiplier and each training example. Once the 
Lagrangian multipliers are determined, the normal vector w 
and the threshold b can be derived from the Lagrangian 
multipliers: 
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2. Structured SVM 

Structured classification is the problem of predicting y from 
x when y has a meaningful internal structure. Elements ∈y Y  
may be, for instance, sequences, strings, labeled trees, lattices, 
or graphs. The approach we pursue is to learn a discriminant 
function F:X×Y  R over <input, output> pairs from which 
we can derive a prediction by maximizing F over the response 
variable for a specific given input x. Hence, the general form of 
our hypotheses f is 

( ; ) arg max ( , ; ),f F
∈

=
y Y

x w x y w  

where w denotes a parameter vector. 
As the principle of the maximum-margin presented in [1], in 

the structured classification problem, Tsochantaridis and others 
proposed several maximum-margin optimization problems [4]. 
For convenience, we define 

( , ) ( , ) ( , ),x y x y x yi i i i iδΨ ≡ Ψ − Ψ  

where (xi, yi) is the training data. 
The hard-margin optimization problem can be written as 
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The soft-margin criterion was proposed to allow errors in the 
training set by introducing slack variables [4]. 

2
1 ,

1: min ,
2

s. t . , 0,

,

n

w i
i

i

CSVM
n

i

i

ξ ξ

ξ

+

∀ ≥

∀ ∀ ∈

∑w

y Y , ( , ) 1 .i i i iδ ξ⋅ Ψ ≥ −y w x y

    
(7)

 

Alternatively, using a quadratic term 2

2 i i
C
n

ξ∑  to penalize  

margin violations, we obtained SVM2 [4]. Here, C > 0 is a 
constant that controls the tradeoff between training error 
minimization and margin maximization. 

To deal with problems in which |Y| is very large, such as 
semantic parsing, Tsochantaridis and others proposed two 
approaches that generalize the formulation SVM0 and SVM1 to 
the cases of arbitrary loss function [4]. The first approach is to 
re-scale the slack variables according to the loss incurred in 
each of the linear constraints: 
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The second approach to include loss function is to re-scale 
the margin as a special case of Hamming loss. The margin 
constraints in this setting take the following form: 
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Algorithm 1. Cutting plane algorithm for solving 

structured SVM within tolerance ε  [4]. 
1: Input: (x1,y1),···, (xn,yn), C, ε  
2: iS φ←  for all i = 1,···, n 
3: repeat 
4:   for i = 1,···, n do 
5:     set up cost function 
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7:     compute max{0, max ( )}y y

ii S Hξ ∈=  

8:     if ˆ( )y iH ξ ε> +  then 
9:       ˆ{ }yi iS S← ∪  
10:      optimize dual over S i iS Sα ← = ∪  
11:    end if 
12:  end for 
13: until no Si changes during iteration 

 

3. SVM Learning 

The support vector learning algorithm aims to find a small 
set of active constraints that ensures a sufficiently accurate 
solution. 

The pseudocode of the algorithm is given in algorithm 1 [4]. 
The algorithm applies to all the SVM formulations previously 
discussed. The only difference is in the way the cost function is 
set up in step 5. The algorithm maintains a working set Si for 
each training example (xi, yi) to keep track of the selected 
constraints which define the current relaxation. Iterating 
through the training examples (xi, yi), the algorithm proceeds 
by finding the (potentially) “most violated” constraint, 
involving some output value ŷ (line 6). If the (appropriately 
scaled) margin violation of this constraint exceeds the current 
value of iξ  by more than e (line 8), the dual variable  
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corresponding to ŷ  is added to the working set (line 9). Once 
a constraint has been added, the solution is recomputed with 
regard to S by SVM-light (line 10) [4]. The algorithm stops if 
no constraint is violated by more than e. 

III. Fixed-Threshold SMO for Structured SVM 

In this section, we describe the FSMO algorithm for solving 
structured SVM. Instead of SVM-light, FSMO is used to solve 
the dual problem of structured SVM in the cutting plane 
algorithm (line 10 in algorithm 1). 

We can solve the optimization problem of structured SVM 
presented in (6) through (9) with Lagrangian multipliers. We 
only describe the case of margin re-scaling due to space 
limitation: 
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From (10) through (12), we obtain the following dual form 
which is a QP problem where the objective function L3 is solely 
dependent on a set of Lagrangian multipliers α : 
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The extremum of the object function L3 is at 
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Algorithm 2. FSMO algorithm for solving dual form of 
structured SVM. 

1: Input: (x1,y1),···, (xn,yn), S, Sα , C 
2: 
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3: repeat 
4:   for ˆ( , )x yi  in S do 
5:     if ˆ( , )x yi violates the KKT condition do 
6:       update ŷiα : 
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8:     end if 
9:   end for 
10: until no ŷiα  changes during iteration 
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can get the following update equation from (14). 
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For the optimization with slack re-scaling, the loss function 
affects the linear part of the objective function and inequality 
constrains (13) as follows: 
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Then we can calculate the update equation for slack re-
scaling from (16) as 
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Quadratic slack penalties (SVM2) can be applied, but we 

skip them due to the space limitation. 
The update equation forces the output of the structured SVM  

to be ( , )y yiΔ and 1 in the cases of margin re-scaling and 
slack re-scaling, respectively. After the new α is computed, it is 
clipped to the [0,C/n] interval in margin re-scaling and to the 
[0,1] interval in slack re-scaling. 

Because structured SVM has no bias in (6) through (9), (13) 
and (16) do not have the linear equality constraint (4) of 
standard SVM. Therefore, FSMO can optimize only one 
Lagrange multiplier at a time. 

The pseudocode of FSMO is given in algorithm 2. The 
algorithm applies to the slack re-scaling and margin re-scaling 
formulations previously discussed. The only difference is the 
update equation in step 6. Iterating through the training 
examples ˆ( , )x yi  in working set S (line 4), the algorithm 
proceeds by finding the constraint which violates the KKT 
conditions [5]. Equations (18) and (19) are the KKT conditions 
for the QP problems (13) and (16). The QP problems are 
solved when, for all i, 
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where ( , ).y w x yi i iu δ= ⋅ Ψ  

Note that due to the KKT conditions, it is not necessary to re-
train on well classified examples that are outside the margins 
[5]. If the constraint does not satisfy the KKT condition (line 5), 
the ŷiα  variable corresponding to ˆ( , )x yi  and w are updated 
by using update (15) and (17) (lines 6, 7). The algorithm stops 
if no ŷiα  changes during iteration.  

The FSMO algorithm is used to solve the dual problem of 
structured SVM in the cutting plane algorithm (line 10 in 
algorithm 1). 

IV. Application and Experiments 

We implemented structured SVM using FSMO (in C++) to 
solve QP problems. For comparison, we run the SVM-Struct 
that uses SVM-light for solving QP problems [4], maximum 
entropy (ME), and conditional random fields (CRF) [14]. We 
also run the LIBSVM which uses the SMO method [15]. For 
FSMO, SVM-Struct, and LIBSVM, a linear kernel is used. 
Table 1 summarizes the characteristics of the data sets used. 

1. Multiclass Classification 

We implemented the conventional winner-takes-all (WTA) 
multiclass classification [16] as follows. Let Y = {y1,···, yk} and 
w = (w1,···, wk) be a stack of vectors, wk being a weight vector 
associated with the k-th class yk. Then we define  

( , ; ) ( ),k kF = ⋅Φx y w w x where ( )x DRΦ ∈ denotes an 
arbitrary input representation. We define the multiclass SVM as 
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Figure 1 shows log-log plots of how training time increases 
with the size of the training set on the MNIST data set. We use 
C=2000 and e=0.01 for FSMO and SVM-Struct, C=2000/n (n 
is a training set size) for LIBSVM, and g=1 (g is a Gaussian 
priority) for ME. FSMO is substantially faster than SVM-
Struct and LIBSVM in most cases. LIBSVM is faster than 
FSMO in the small training set size of 100, but it is slower than 
other methods in middle and large training set sizes. FSMO is 
34 times faster than SVM-Struct and 42 times faster than 
LIBSVM, when the training set size is 60,000. The FSMO 
training time scales as O(n), while SVM-Struct and LIBSVM 
scale as O(n1.6) and O(n1.9), respectively. 

Figure 2 shows the training times on the news20 data set (we 
use C=100 and e=0.01 for FSMO and SVM-Struct, C=100/n  

 

Table 1. Data sets used in the experiments. 

Data set Task Size # class # attribute

MNIST Multi-classification 60,000 10 780

News20 Multi-classification 10,000 20 62,061

Rcv1-binary Multi-classification 80,000 2 47,236
English 

chunking 
Sequence labeling 100,000 22 387,875

Korean 
spacing 

Sequence labeling 1,000,000 2 228,260
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Fig. 1. Training times of the MNIST data set. 
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Fig. 2. Training times of the news20 data set. 
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for LIBSVM, and g=0.02 for ME). FSMO is about 40 times 
faster than SVM-Struct and 7 times faster than LIBSVM, 
when the training set size is 10,000. The FSMO training time 
scales as O(n1.2), while SVM-Struct and LIBSVM scale as 
O(n1.6) and O(n1.7), respectively. 

Figure 3 shows the training time on the Rcv1-binary data set 
(we use C=100 and e=0.01 for FSMO and SVM-Struct, 
C=100/n for LIBSVM, and g=1 for ME). FSMO is about 13 
times faster than SVM-Struct and 80 times faster than 
LIBSVM, when the training set size is 80,000. The FSMO 
training time scales as O(n), while SVM-Struct and LIBSVM 
scale as O(n1.5) and O(n1.6), respectively. 

 

Fig. 3. Training times of the Rcv1-binary data set. 
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Table 2. Performance (F1) on the data sets. 

Algorithm MNIST News20 Rcv1-binary 

FSMO 92.59 82.82 96.42 

SVM-Struct 92.68 82.90 96.41 

LIBSVM 91.61 83.12 96.50 

ME 92.30 82.24 96.38 

 
In multiclass classification, FSMO has much better scaling 

than SVM-Struct and LIBSVM. One potential worry is that the 
speedup of FSMO over SVM-Struct could come at the 
expense of prediction accuracy; however this is not the case. 
Table 2 shows the performance (F1) of FSMO, SVM-Struct, 
LIBSVM, and ME on the data sets. FSMO and SVM-Struct 
show very similar performance. The differences between them 
are not statistically significant. 

2. Label Sequence Learning 

Label sequence learning deals with the problem of predicting a 
sequence of labels, 1( , , ), ,m k= ∈ Σy y y y  from a given 
sequence of inputs, 1( , , )x x xm=  and w = (w1,···, wk), 
where wk is a weight vector associated with yk. It subsumes 
problems like segmenting or annotating observation sequences 
and has widespread applications in optical character recognition, 
natural language processing, information extraction, and 
computational biology. In the setup followed in [17], the joint 
feature map ( , )x yΨ  is the histogram of state transition plus a 
set of features describing the emissions. An adapted version of 
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the Viterbi algorithm is used to solve the argmax in line 6 of 
algorithm 1. We define structured SVM for sequence tagging as 
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Fig. 4. Training time of the English chunking data set. 
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Fig. 5. Training time of the Korean spacing data set. 
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Table 3. Performance (F1) on the data sets. 

Algorithm English chunking (%) Korean spacing (%)

FSMO 92.76 97.03 

SVM-Struct 92.76 97.04 

CRF 92.79 96.91 

 

  Figure 4 shows the training time on the English chunking 
data set (we use C=1000 and e=0.01 for FSMO and SVM-
Struct, and g=1 for CRF). FSMO is substantially faster than 
SVM-Struct on all training set sizes. FSMO is 72 times faster 
than SVM-Struct and similar to CRF when the training set size 
is 100,000. The FSMO training time scales as O(n), while 
SVM-Struct scales as O(n1.5). 

Figure 5 shows the training time on the Korean spacing data 
set (we use C=1000 and e=0.1 for FSMO and SVM-Struct, 
and g=1 for CRF). FSMO is about 40 times faster than SVM-
Struct and similar to CRF when the training set size is 
1,000,000. The FSMO training time scales as O(n1.2), while 
SVM-Struct scales as O(n1.7). 

In sequence tagging, FSMO also has much better scaling 
than SVM-Struct. Table 3 shows the performance (F1) of 
FSMO, SVM-Struct, and CRF on the data sets. The 
performance of FSMO, SVM-Struct, and CRF are very similar. 
The differences between FSMO and SVM-Struct are not 
statistically significant. 

V. Conclusion 

This paper presented FSMO for structured SVM problems. 
FSMO is simple and faster than the standard SVM training 
algorithms for structured SVM problems. For various test sets, 
FSMO is as accurate as an existing structured SVM 
implementation (SVM-Struct) but is much faster on large data 
sets. FSMO is 10 to 70 times faster than SVM-Struct and 7 to 80 
times faster than LIVSVM which uses the SMO method. The 
training time of FSMO empirically scales between O(n) and 
O(n1.2), while SVM-Struct scales between O(n1.5) and O(n1.8). 
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