• Title/Summary/Keyword: vector mechanics

Search Result 132, Processing Time 0.03 seconds

A Study on the Development of Model for Estimating the Thickness of Clay Layer of Soft Ground in the Nakdong River Estuary (낙동강 조간대 연약지반의 지역별 점성토층 두께 추정 모델 개발에 관한 연구)

  • Seongin, Ahn;Dong-Woo, Ryu
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.586-597
    • /
    • 2022
  • In this study, a model was developed for the estimating the locational thickness information of the upper clay layer to be used for the consolidation vulnerability evaluation in the Nakdong river estuary. To estimate ground layer thickness information, we developed four spatial estimation models using machine learning algorithms, which are RF (Random Forest), SVR (Support Vector Regression) and GPR (Gaussian Process Regression), and geostatistical technique such as Ordinary Kriging. Among the 4,712 borehole data in the study area collected for model development, 2,948 borehole data with an upper clay layer were used, and Pearson correlation coefficient and mean squared error were used to quantitatively evaluate the performance of the developed models. In addition, for qualitative evaluation, each model was used throughout the study area to estimate the information of the upper clay layer, and the thickness distribution characteristics of it were compared with each other.

Parameter estimation of four-parameter viscoelastic Burger model by inverse analysis: case studies of four oil-refineries

  • Dey, Arindam;Basudhar, Prabir Kr.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.211-228
    • /
    • 2012
  • This paper reports the development of a generalized inverse analysis formulation for the parameter estimation of four-parameter Burger model. The analysis is carried out by formulating the problem as a mathematical programming formulation in terms of identification of the design vector, the objective function and the design constraints. Thereafter, the formulated constrained nonlinear multivariable problem is solved with the aid of fmincon: an in-built constrained optimization solver module available in MatLab. In order to gain experience, a synthetic case-study is considered wherein key issues such as the determination and setting up of variable bounds, global optimality of the solution and minimum number of data-points required for prediction of parameters is addressed. The results reveal that the developed technique is quite efficient in predicting the model parameters. The best result is obtained when the design variables are subjected to a lower bound without any upper bound. Global optimality of the solution is achieved using the developed technique. A minimum of 4-5 randomly selected data-points are required to achieve the optimal solution. The above technique has also been adopted for real-time settlement of four oil refineries with encouraging results.

The PIV Measurements on the Respiratory Gas Flow in the Human Airway (호흡기 내 주기적 공기유동에 대한 PIV 계측)

  • Kim, Sung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1051-1056
    • /
    • 2006
  • The mean and RMS velocity field of the respiratory gas flow in the human airway was studied experimentally by particle image velocimetry (PIV). Some researchers investigated the airflow for the mouth breathing case both experimentally and numerically. But it is very rare to investigate the airflow of nose breathing in a whole airway due to its geometric complexity. We established the procedure to create a transparent rectangular box containing a model of the human airway for PIV measurement by combination of the RP and the curing of clear silicone. We extend this to make a whole airway including nasal cavities, larynx, trachea, and 2 generations of bronchi. The CBC algorithm with window offset (64 $\times$ 64 to 32 $\times$ 32) is used for vector searching in PIV analysis. The phase averaged mean and RMS velocity distributions in Sagittal and coronal planes are obtained for 7 phases in a respiratory period. Some physiologic conjectures are obtained. The main stream went through the backside of larynx and trachea in inspiration and the frontal side in expiration. There exist vortical motions in inspiration, but no prominent one in expiration.

A Study on the Bucket Loading Characteristics for Wheel-loader Loading Automation (휠로더 굴착 자동화를 위한 버킷 부하특성 연구)

  • Seo, Dong-Kwan;Seo, Hyun-Jae;Kang, In-Pil;Kwon, Young-Min;Lee, Sang-Hoon;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1332-1340
    • /
    • 2009
  • The front end wheel loader is widely used for the loading of materials in mining and construction fields. It has repetitive digging, loading and dumping procedures. The bucket is subjected to large resistance force from the soil during scooping. We considered the soil reaction force characteristics from scooping procedure, the protection by overload and automatic scooping mode algorithm. The main topic of this paper is the analysis of the soil reaction force characteristics. The analysis of soil mechanics is carried out and the developed soil model is verified by experimental results from the simplified experimental equipment. A simplified model of the soil shape and bucket trajectory is used to determine the scooping direction based on an estimation of the resistance force applied on the bucket during the scooping motion. In the future, this model will be used for the generation of an appropriate path for the wheel loader automation.

Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations

  • Asadzadeh, Esmaeil;Alam, Mehtab;Asadzadeh, Sahebali
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.797-816
    • /
    • 2014
  • Cooling tower is analyzed as an assembly of layered nonlinear shell elements. Geometric representation of the shell is enabled through layered nonlinear shell elements to define the different layers of reinforcements and concrete by considering the material nonlinearity of each layer for the cooling tower shell. Modal analysis using Ritz vector analysis and nonlinear time history analysis by direct integration method have been carried out to study the effects of the inclination of the supporting columns of the cooling tower shell on its dynamic characteristics. The cooling tower is supported by I-type columns and ${\Lambda}$-type columns supports having the different inclination angles. Relevant comparisons of the dynamic response of the structural system at the base level (at the junction of the column and shell), throat level and at the top of the tower have been made. Dynamic response of the cooling tower is found to be significantly sensitive to the change of the inclination of the supporting columns. It is also found that the stiffness of the structure system increases with increase in inclination angle of the supporting columns, resulting in decrease of the period of the structural system. The participation of the stiffness of the tower in structural response of the cooling tower is fund to be dependent of the change in the inclination angle and even in the types of the supporting columns.

Implementation of Polycrystal Model in Rigid Plastic Finite Element Method (강소성 유한요소법에서의 다결정 모델의 구현)

  • Kang, G.P.;Lee, K.;Kim, Y.H.;Shin, K.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.286-292
    • /
    • 2017
  • Magnesium alloy shows strong anisotropy and asymmetric behavior in tension and compression curve, especially at room temperature. These characteristics limit the application of finite element method (FEM) which is based on conventional continuum mechanics. To accurately predict the material behavior of magnesium alloy at microstructural level, a methodology of fully coupled multiscale simulation is presented and a crystal plasticity model as a constitutive equation in the simulation of metal forming process is introduced in this study. The existing constitutive equation for rigid plastic FEM is modified to accommodate deviatoric stress component and its derivatives with respect to strain rate components. Viscoplastic self-consistent (VPSC) polycrystal model was selected as a constitutive model because it was regarded as the most robust model compared to Taylor model or Sachs model. Stiffness matrix and load vector were derived based on the new approach and implemented into $DEFORM^{TM}-3D$ via a user subroutine handling stiffness matrix at an elemental level. The application to extrusion and rolling process of pure magnesium is presented in this study to assess the validity of the proposed multiscale process.

Estimation of main cable tension force of suspension bridges based on ambient vibration frequency measurements

  • Wang, Jun;Liu, Weiqing;Wang, Lu;Han, Xiaojian
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.939-957
    • /
    • 2015
  • In this paper, a new approach based on the continuum model is proposed to estimate the main cable tension force of suspension bridges from measured natural frequencies. This approach considered the vertical vibration of a main cable hinged at both towers and supported by an elastic girder and hangers along its entire length. The equation reflected the relationship between vibration frequency and horizontal tension force of a main cable was derived. To avoid to generate the additional cable tension force by sag-extensibility, the analytical solution of characteristic equation for anti-symmetrical vibration mode of the main cable was calculated. Then, the estimation of main cable tension force was carried out by anti-symmetric characteristic frequency vector. The errors of estimation due to characteristic frequency deviations were investigated through numerical analysis of the main cable of Taizhou Bridge. A field experiment was conducted to verify the proposed approach. Through measuring and analyzing the responses of a main cable of Taizhou Bridge under ambient excitation, the horizontal tension force of the main cable was identified from the first three odd frequencies. It is shown that the estimated results agree well with the designed values. The proposed approach can be used to conduct the long-term health monitoring of suspension bridges.

Efficient finite element model for dynamic analysis of laminated composite beam

  • Naushad Alam, M.;Upadhyay, Nirbhay Kr.;Anas, Mohd.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.471-488
    • /
    • 2012
  • An efficient one dimensional finite element model has been presented for the dynamic analysis of composite laminated beams, using the efficient layerwise zigzag theory. To meet the convergence requirements for the weak integral formulation, cubic Hermite interpolation is used for the transverse displacement ($w_0$), and linear interpolation is used for the axial displacement ($u_0$) and shear rotation (${\psi}_0$). Each node of an element has four degrees of freedom. The expressions of variationally consistent inertia, stiffness matrices and the load vector are derived in closed form using exact integration. The formulation is validated by comparing the results with the 2D-FE results for composite symmetric and sandwich beams with various end conditions. The employed finite element model is free of shear locking. The present zigzag finite element results for natural frequencies, mode shapes of cantilever and clamped-clamped beams are obtained with a one-dimensional finite element codes developed in MATLAB. These 1D-FE results for cantilever and clamped beams are compared with the 2D-FE results obtained using ABAQUS to show the accuracy of the developed MATLAB code, for zigzag theory for these boundary conditions. This comparison establishes the accuracy of zigzag finite element analysis for dynamic response under given boundary conditions.

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

Function space formulation of the 3-noded distorted Timoshenko metric beam element

  • Manju, S.;Mukherjee, Somenath
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • The 3-noded metric Timoshenko beam element with an offset of the internal node from the element centre is used here to demonstrate the best-fit paradigm using function space formulation under locking and mesh distortion. The best-fit paradigm follows from the projection theorem describing finite element analysis which shows that the stresses computed by the displacement finite element procedure are the best approximation of the true stresses at an element level as well as global level. In this paper, closed form best-fit solutions are arrived for the 3-noded Timoshenko beam element through function space formulation by combining field consistency requirements and distortion effects for the element modelled in metric Cartesian coordinates. It is demonstrated through projection theorems how lock-free best-fit solutions are arrived even under mesh distortion by using a consistent definition for the shear strain field. It is shown how the field consistency enforced finite element solution differ from the best-fit solution by an extraneous response resulting from an additional spurious force vector. However, it can be observed that when the extraneous forces vanish fortuitously, the field consistent solution coincides with the best-fit strain solution.