• 제목/요약/키워드: vector finite element method

검색결과 234건 처리시간 0.024초

A Study on Driving Simulation and Efficiency Maps with Nonlinear IPMSM Datasets

  • Kim, Won-Ho;Jang, Ik-Sang;Lee, Ki-Doek;Im, Jong-Bin;Jin, Chang-Sung;Koo, Dae-Hyun;Lee, Ju
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.71-73
    • /
    • 2011
  • Hybrid electric vehicles have attracted much attention of late, emphasizing the necessity of developing traction motors with a high input current and a wide speed range. Among such traction motors, various researches have been conducted on interior permanent-magnet synchronous motors (IPMSMs) with high power density and mechanical solidity. Due to the complexity of its parameters, however, with nonlinear motor characteristics and current vector control, it is actually difficult to accurately estimate the base speed within an actual operating speed range or a voltage limit. Moreover, it is impossible to construct an efficiency map as the efficiency differs according to the control mode. In this study, a simulation method for operation performance considering the nonlinearity of IPMSM was proposed. For this, datasets of various nonlinear parameters were made via the finite-element method and interpolation. Maximum torque-per-ampere and flux-weakening control were accurately simulated using the datasets, and an IPMSM efficiency map was accurately constructed based on the simulation. Lastly, the validity of the simulation was verified through tests.

단락 개방 Calibration 방법을 이용한 MIM 커패시터의 기생 소자 값 추출 (A Parasitic Elements Extraction of MIM Capacitor Using Short-Open Calibration Method)

  • 김유선;남훈;임영석
    • 대한전자공학회논문지TC
    • /
    • 제45권8호
    • /
    • pp.114-120
    • /
    • 2008
  • 본 논문에서는 단락 개방 Calibration (SOC) 방법을 이용하여 MIM 구조로 구성된 커패시터의 기생 소자 값들을 추출하였다. Strip line 으로 구성된 short, open, MIM 구조들의 산란 파라미터 행렬들은 전자기 시뮬레이터 및 벡터 네트웍 분석기를 이용하여 측정되었다. 전자기 시뮬레이션들은 3차원 구조 해석에 적합해왔던 유한 유소법 (FEM)을 이용하여 수행되었다. 적층 구조 내부에 형성된 MIM 커패시터의 전자기 영향들은 집중 소자들로 구성된 II 형 등가 회로로 제안되었고, 2 포트 네트웍 해석을 수행함으로써, 측정된 산란 파라미터들과 등가회로 소자들 간의 관계를 보였다. 제안된 SOC 방법을 이용하여 추출된 집중 소자들은 주파수 독립적인 결과를 나타낸다.

Structural noise mitigation for viaduct box girder using acoustic modal contribution analysis

  • Liu, Linya;Qin, Jialiang;Zhou, Yun-Lai;Xi, Rui;Peng, Siyuan
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.421-432
    • /
    • 2019
  • In high-speed railway (HSR) system, the structure-borne noise inside viaduct at low frequency has been extensively investigated for its mitigation as a research hotspot owing to its harm to the nearby residents. This study proposed a novel acoustic optimization method for declining the structure-borne noise in viaduct-like structures by separating the acoustic contribution of each structural component in the measured acoustic field. The structural vibration and related acoustic sourcing, propagation, and radiation characteristics for the viaduct box girder under passing vehicle loading are studied by incorporating Finite Element Method (FEM) with Modal Acoustic Vector (MAV) analysis. Based on the Modal Acoustic Transfer Vector (MATV), the structural vibration mode that contributes maximum to the structure-borne noise shall be hereinafter filtered for the acoustic radiation. With vibration mode shapes, the locations of maximum amplitudes for being ribbed to mitigate the structure-borne noise are then obtained, and the structure-borne noise mitigation performance shall be eventually analyzed regarding to the ribbing conduction. The results demonstrate that the structural vibration and structure-borne noise of the viaduct box girder mainly occupy both in the range within 100 Hz, and the dominant frequency bands both are [31.5, 80] Hz. The peak frequency for the structure-borne noise of the viaduct box girder is mainly caused by $16^{th}$ and $62^{th}$ vibration modes; these two mode shapes mainly reflect the local vibration of the wing plate and top plate. By introducing web plate at the maximum amplitude of main mode shapes that contribute most to the acoustic modal contribution factors, the acoustic pressure peaks at the field-testing points are hereinafter obviously declined, this implies that the structure-borne noise mitigation performance is relatively promising for the viaduct.

밀리미터파 대역에서의 마이크로스크립-슬롯라인을 이용한 전력분배기의 해석 및 설계 (Analysis and Design of Power Divider Using the Microstrip-Slotline Transition in Millimeter-Wave Band)

  • 정철용;정진호;김준연;천창율;권영우
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권6호
    • /
    • pp.489-493
    • /
    • 1999
  • In this paper, an analysis of microstrip-slotline transition is performed using a 3D vector Finite Element Method(FEM). Artificial anistropic absorber technique is employed to implement an matching boundary condition in FEM. On the base of the analysis, power divider/combiner is designed. The structure of the power combiner already developed are Branch-line coupler, Rat-race coupler, Wilkinson coupler, Lange coupler, etc. Which are all planar, If the frequency goes up, the coupling efficiency of these planar couplers is decreased on account of skin loss. Especially, in millimeter-wave band, the efficiency of more than two ways combiner is radically reduced, so that application in power amplifier circuit is almost impossible, Microstrip-slotline transition structure is a power combining technique integrated into wave-guide, so that the loss is small and the efficiency is high. Theoretically, we can mount several transistors into the power-combiner. This makes it possible to develop a high power amplifier. The numerically calculated performances of the device that is, we believe, the best are compared to the experimental results in Ka-Band(26.5GHz-40GHz).

  • PDF

Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations

  • Asadzadeh, Esmaeil;Alam, Mehtab;Asadzadeh, Sahebali
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.797-816
    • /
    • 2014
  • Cooling tower is analyzed as an assembly of layered nonlinear shell elements. Geometric representation of the shell is enabled through layered nonlinear shell elements to define the different layers of reinforcements and concrete by considering the material nonlinearity of each layer for the cooling tower shell. Modal analysis using Ritz vector analysis and nonlinear time history analysis by direct integration method have been carried out to study the effects of the inclination of the supporting columns of the cooling tower shell on its dynamic characteristics. The cooling tower is supported by I-type columns and ${\Lambda}$-type columns supports having the different inclination angles. Relevant comparisons of the dynamic response of the structural system at the base level (at the junction of the column and shell), throat level and at the top of the tower have been made. Dynamic response of the cooling tower is found to be significantly sensitive to the change of the inclination of the supporting columns. It is also found that the stiffness of the structure system increases with increase in inclination angle of the supporting columns, resulting in decrease of the period of the structural system. The participation of the stiffness of the tower in structural response of the cooling tower is fund to be dependent of the change in the inclination angle and even in the types of the supporting columns.

Jacket형 해양구조물(海洋構造物)의 비선형(非線形) 동적응답해석(動的應答解析) (Nonlinear Analysis of Dynamic Response of Jacket Type Offshore Structures)

  • 김용철;노인식;박성식
    • 대한조선학회지
    • /
    • 제23권2호
    • /
    • pp.33-45
    • /
    • 1986
  • In the present paper, the nonlinear analysis of dynamic response of the jacket type offshore structures subject to nonlinear fluid force is performed. Furthermore, several analysis methods, such as quasi-static analysis, Newmark-$\beta$ method and state vector time integration technique, and described and compared with each others in order to investigate the efficiency numerical of the schemes for this kind of nonlinear structural analysis. In the problem formulation, various environmental forces acting on the jacket type offshore structure have been studied and calculated. Particularly, hydrodynamic forces are calculated by using the Morison type formula, which contains the interaction effect between the motion of the structure and the velocity of fluid particles. Also, Stokes' 5th order wave theory and Airy's linear wave theory are used to predict the velocity distribution of the fluid particles. Finally, the nonlinear equation of motion of the structure is obtained by using three-dimensional finite element formulation. Based on the above procedures, two examples, i.e. a single pile and a typical offshore jacket platform, are studied in details.

  • PDF

영구자석 Halbach형 원통형 액추에이터의 구동전압 파형에 따른 와전류 손실 (Analysis on Eddy Current Losses for Cylindrical Linear Oscillatory Actuator with Halbach Array according to Drive Voltage Waveform)

  • 장석명;김현규;박지훈;고경진;최장영;김일중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.49-51
    • /
    • 2009
  • This paper deals with the analysis on eddy current losses for cylindrical linear oscillatory actuator (LOA) with Halbach array mover according to voltage waveform. This paper presents analytical procedures for calculation of eddy current losses using Poynting theorem. On the basis of the magnetic vector potential and a two-dimensional (2-d) cylindrical coordinate system, this paper derived analytical solutions of eddy current tosses using phase current analysis. The eddy current losses of each harmonic obtained by fast Fourier transform (FFT) analysis of phase current are compared with results obtained from finite-element method (FEM). Particularly, this paper shows that the eddy current losses of cylindrical LOA according to square voltage waveform are more significant than those according to sinusoidal voltage waveform.

  • PDF

Comparative Study of Armature Reaction Field Analysis for Tubular Linear Machine with Axially Magnetized Single-sided and Double-sided Permanent Magnet Based on Analytical Field Calculations

  • Shin, Kyung-Hun;Park, Min-Gyu;Cho, Han-Wook;Choi, Jang-Young
    • Journal of Magnetics
    • /
    • 제20권1호
    • /
    • pp.79-85
    • /
    • 2015
  • This paper presents a comparative study of a Tubular Linear Machine (TLM) with an Axially Magnetized Single-sided Permanent Magnet (AMSPM) and an Axially Magnetized Double-sided Permanent Magnet (AMDPM) based on analytical field calculations. Using a two-dimensional (2-D) polar coordinate system and a magnetic vector potential, analytical solutions for the flux density produced by the stator windings are derived. This technique is significant for the design and control implementation of electromagnetic machines. The field solution is obtained by solving Maxwell's equations in the simplified boundary value problem consisting of the air gap and coil. These analytical solutions are then used to estimate the self and mutual inductances. Two different types of machine are used to verify the validity of these model simplifications, and the analytical results are compared to results obtained using the finite element method (FEM) and experimental measurement.

유선 가시화를 이용한 FEM과 실험에 의한 진동판에 대한 개선된 진동 벡터 인텐시티장 (Improved Vibration Vector Intensity Field for FEM and Experimental Vibrating Plate Using Streamlines Visualization)

  • 누룰 파와지;정재은;오재응
    • 한국소음진동공학회논문집
    • /
    • 제22권8호
    • /
    • pp.777-783
    • /
    • 2012
  • 진동 인텐시티는 진동시스템에서 진동원의 위치를 찾는데 사용되어 왔다. 벡터 표현법 사용에 의해 파워흐름의 원인과 진동에너지 전달경로가 밝혀질 수 있다. 그러나, 판과 같은 구조물의 넓은 면적으로 인해 벡터 가시화를 사용하여 명확한 전달경로를 알아낼 수 없었다. 실험적으로 큰 면적의 물체에서는 측정점의 수가 늘어나게 된다. 이것은 측정에 많은 시간이 요구된다. 이번 연구에서는 FEM과 실험에 의한 모든 면에서 파워흐름 전달경로를 분명하게 가리키기 위해 유선 표현법이 사용되었다. 진동 인텐시티 전달경로를 분명하게 향상시키기 위해 실험과 FEM으로부터의 유선 표현을 비교하였다. 또한 FEM과 실험의 개선된 전달경로 가시화를 기존의 벡터표현과 비교하였다. 이 유선 가시화는 큰 표면을 갖는 판과 같은 구조물에 대해 진동원과 상세한 에너지 전달경로를 확인하는데 유용하다. 그 뿐만 아니라, 이 가시화 방법은 실험과 FEM 해석에 대해 많은 측정점을 필요로 하지 않는다.

Smart monitoring analysis system for tunnels in heterogeneous rock mass

  • Kim, Chang-Yong;Hong, Sung-Wan;Bae, Gyu-Jin;Kim, Kwang-Yeom;Schubert, Wulf
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.255-261
    • /
    • 2003
  • Tunnelling in poor and heterogeneous ground is a difficult task. Even with a good geological investigation, uncertainties with respect to the local rock mass structure will remain. Especially for such conditions, a reliable short-term prediction of the conditions ahead and outside the tunnel profile are of paramount importance for the choice of appropriate excavation and support methods. The information contained in the absolute displacement monitoring data allows a comprehensive evaluation of the displacements and the determination of the behaviour and influence of an anisotropic rock mass. Case histories and with numerical simulations show, that changes in the displacement vector orientation can indicate changing rock mass conditions ahead of the tunnel face (Schubert & Budil 1995, Steindorfer & Schubert 1997). Further research has been conducted to quantify the influence of weak zones on stresses and displacements (Grossauer 2001). Sellner (2000) developed software, which allows predicting displacements (GeoFit$\circledR$). The function parameters describe the time and advance dependent deformation of a tunnel. Routinely applying this method at each measuring section allows determining trends of those parameters. It shows, that the trends of parameter sets indicate changes in the stiffness of the rock mass outside the tunnel in a similar way, as the displacement vector orientation does. Three-dimensional Finite Element simulations of different weakness zone properties, thicknesses, and orientations relative to the tunnel axis were carried out and the function parameters evaluated from the results. The results are compared to monitoring results from alpine tunnels in heterogeneous rock. The good qualitative correlation between trends observed on site and numerical results gives hope that by a routine determination of the function parameters during excavation the prediction of rock mass conditions ahead of the tunnel face can be improved. Implementing the rules developed from experience and simulations into the monitoring data evaluation program allows to automatically issuing information on the expected rock mass quality ahead of the tunnel.

  • PDF