• 제목/요약/키워드: vector error correction

검색결과 229건 처리시간 0.031초

환율변동성이 해상 및 항공 수출입화물에 미치는 영향 (Analysis of the Effects of the Exchange Rate Volatility on Marine and Air Transportation)

  • 안경애
    • 무역학회지
    • /
    • 제42권6호
    • /
    • pp.131-154
    • /
    • 2017
  • 국제무역에서 운송수단의 선택은 일반적으로 화물의 운임이 가장 큰 직접적인 영향을 주지만 그 외 세계경기의 상황과 글로벌 무역규모 그리고 환율 등의 외부변수에 의해서도 민감하게 반응한다. 따라서 국제무역에서 해상 및 항공운송 수출입의 변화에 이러한 외부적 요인 등을 고려하여 어떠한 관계 또는 영향이 있는지를 실증분석을 통해 살펴보고 시사점을 도출하고자 한다. 최근과 같이 환율의 변화가 심할 경우 해상 및 항공운송에 미치는 영향에 대한 분석은 중요한 주제이며 어떠한 운송수단이 환율변화에 더 민감하게 반응하는지에 대한 분석도 필요하다. 본 연구에서는 2000년 1월~2017년 3월까지 월별 자료를 이용하여 환율의 변화와 국내외 경기수준이 해상 및 항공운송에 미치는 동태적 영향을 분석하기 위해 벡터오차수정모형을 이용하였으며, 충격반응함수 및 예측오차 분산분해도 함께 분석하였다.

  • PDF

Analysis of the relationship between garlic and onion acreage response

  • Lee, Eulkyeong;Hong, Seungjee
    • 농업과학연구
    • /
    • 제43권1호
    • /
    • pp.136-143
    • /
    • 2016
  • Garlic and onion are staple agricultural products to Koreans and also are important with regard to agricultural producers' income. These products' acreage responses are highly correlated with each other. Therefore, it is necessary to test whether there is a cointegration relationship between garlic acreage and onion acreage when one tries to estimate the acreage response's function. Based upon the test result of cointegration, it is confirmed that there is no statistically significant cointegration relationship between garlic acreage and onion acreage. In this case, vector autoregressive model is preferred to vector error correction model. This study investigated the dynamic relationship between garlic and onion acreage responses using vector autoregressive (VAR) model. The estimated results of VAR acreage response models show that there is a statistically significant relationship between current and lagged acreage of more than one lag. Therefore, it is recommended that government should consider the long-run period's relationship of each product's acreage when it plans a policy for stabilizing the supply and demand of garlic and onion. For the price variables, garlic price only affects garlic acreage response while onion price affects not only onion acreage response but also garlic acreage response. This implies that the stabilizing policy for onion price could have bigger effects than that for garlic price stabilization.

서포트 벡터 머신을 이용한 NCAM-LAMP 고해상도 중기예측시스템 지점 시계열 자료의 통계적 보정 (A Statistical Correction of Point Time Series Data of the NCAM-LAMP Medium-range Prediction System Using Support Vector Machine)

  • 권수영;이승재;김만일
    • 한국농림기상학회지
    • /
    • 제23권4호
    • /
    • pp.415-423
    • /
    • 2021
  • NCAM-LAMP 중기예측 자료의 통계적 후처리와 개선을 위하여 R 기반의 지점 시계열 자료 검증 체계를 구축하였다. 이 시계열 검증체계를 이용하여 기상청 AWS 관측 자료와 NCAM-LAMP, KMA GDAPS 중기예측 모델 자료를 비교하였다. 이를 위해 관측 지점에 가장 근접한 모델 위도 및 경도 자료를 추출하여 총 9개 지점을 선정하였다. 각 지점에 대해 NCAM-LAMP, GDAPS 모델의 기온, 강수량, 풍속 일평균 예측 자료를 관측과 비교한 결과, 모델들은 풍속의 과대예측 경향을 뚜렷이 보였으며, 기온과 강수의 경우에는 두 모델의 예측력이 월별 및 변수별로 다르게 나타났다. 이를 바탕으로 본 연구에서는 통계적 기법을 개발하여 NCAM-LAMP가 가지고 있는 오차를 줄이고자 하였다. 모델 오차를 줄이기 위해 일반적으로 쓰이는 MOS(Model Output Statistics)기법 중에 인공지능 SVM(Support vector machine) 방식을 8~10월 기간에 적용한 결과, 8월에 비해서 10월이, 기온 변수에 비해서 바람과 강수 변수가 개선된 효과를 보여주었다. 이러한 결과는 풍속의 과대예측을 줄이고, 농림 가뭄지수와 산사태 예측 등을 개선시키며, 지역 수치예보 모델이 시간 적분됨에 따라 영역 내 예측가능성이 점점 저하되는 현상을 완화시키는데 SVM 방법이 일정 부분 기여할 수 있음을 가리키며, 현업 표출 중인 NCAM Agro-Meteogram 개선에도 도움을 줄 것으로 기대된다.

GMM Estimation for Seasonal Cointegration

  • Park, Suk-Kyung;Cho, Sin-Sup;Seon, Byeong-Chan
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.227-237
    • /
    • 2011
  • This paper considers a generalized method of moments(GMM) estimation for seasonal cointegration as the extension of Kleibergen (1999). We propose two iterative methods for the estimation according to whether parameters in the model are simultaneously estimated or not. It is shown that the GMM estimator coincides in form to a maximum likelihood estimator or a feasible two-step estimator. In addition, we derive its asymptotic distribution that takes the same form as that in Ahn and Reinsel (1994).

주가의 전반적 하락기 국내외 증시 변동간의 연관관계 분석 (An Analysis of the Interrelationships between the Domestic and Foreign Stock Market Variations over the Depressed Market Period)

  • 김태호;유경아;김진희
    • 한국경영과학회지
    • /
    • 제28권1호
    • /
    • pp.11-23
    • /
    • 2003
  • This study Investigates the short and long-run dynamic relationships between the domestic and U.S. stock markets for the period of declining stock prices. It Is well known that the domestic stock market variations are largely caused by the U.S. stock market movements. Multivariate causal tty test Is utilized to examine the lead-lag relationships among four stock prices of KOSPI and KOSDAQ In the domestic part and DOWJONES and NASDAQ In the U.S. part. When the stock prices tend to decrease In the long run, It Is found that both KOSPI and KOSDAQ have closer relations with NASDAQ than DOWJONES. When both of domestic stock markets are severely fluctuate, bidirectional causal relationships appear to exist between NASDAQ and each of KOSPI and KOSDAQ. On the other hand. when the domestic stock markets are relatively stable, unidirectional causality Is found to exist between NASDAQ and each of KOSPI and KOSDAQ. which is explicitly validated by the analysis of variance decomposition.

Cointegration Analysis with Mixed-Frequency Data of Quarterly GDP and Monthly Coincident Indicators

  • Seong, Byeongchan
    • 응용통계연구
    • /
    • 제25권6호
    • /
    • pp.925-932
    • /
    • 2012
  • The article introduces a method to estimate a cointegrated vector autoregressive model, using mixed-frequency data, in terms of a state-space representation of the vector error correction(VECM) of the model. The method directly estimates the parameters of the model, in a state-space form of its VECM representation, using the available data in its mixed-frequency form. Then it allows one to compute in-sample smoothed estimates and out-of-sample forecasts at their high-frequency intervals using the estimated model. The method is applied to a mixed-frequency data set that consists of the quarterly real gross domestic product and three monthly coincident indicators. The result shows that the method produces accurate smoothed and forecasted estimates in comparison to a method based on single-frequency data.

Do Real Interest Rate, Gross Domestic Savings and Net Exports Matter in Economic Growth? Evidence from Indonesia

  • SUJIANTO, Agus Eko;PANTAS, Pribawa E.;MASHUDI, Mashudi;PAMBUDI, Dwi Santosa;NARMADITYA, Bagus Shandy
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권11호
    • /
    • pp.127-135
    • /
    • 2020
  • This study aims to measure the effects of real interest rate (RIR), gross domestic savings (GDS), and net exports (EN) shocks on Indonesia's economic growth (EG). The focus on Indonesia is unique due to the abundant resources available in the nation, but they are unsuccessful in boosting economic growth. This study applied a quantitative method to comprehensively analyze the correlation between variables by employing Vector Autoregression Model (VAR) combined with Vector Error Correction Model (VECM). Various procedures are preformed: Augmented Dickey-Fuller test (ADF), Optimum Lag Test, Johansen Cointegration Test, Granger Causality Test, as well as Impulse Response Function (IRF) and Error Variance Decomposition Analysis (FEVD). The data were collected from the World Bank and the Asian Development Bank from 1986 to 2017. The findings of the study indicated that economic growth responded positively to real interest rate shocks, which implies that when the real interest rate experiences a shock (increase), the economy will be inclined to growth. While, economic growth responded negatively to gross domestic savings and net export shocks. Policymakers are expected to consider several matters, particularly the economic conditions at the time of formulating policy, so that the prediction effectiveness of a policy can be appropriately assessed.

A Prediction Model of the Sum of Container Based on Combined BP Neural Network and SVM

  • Ding, Min-jie;Zhang, Shao-zhong;Zhong, Hai-dong;Wu, Yao-hui;Zhang, Liang-bin
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.305-319
    • /
    • 2019
  • The prediction of the sum of container is very important in the field of container transport. Many influencing factors can affect the prediction results. These factors are usually composed of many variables, whose composition is often very complex. In this paper, we use gray relational analysis to set up a proper forecast index system for the prediction of the sum of containers in foreign trade. To address the issue of the low accuracy of the traditional prediction models and the problem of the difficulty of fully considering all the factors and other issues, this paper puts forward a prediction model which is combined with a back-propagation (BP) neural networks and the support vector machine (SVM). First, it gives the prediction with the data normalized by the BP neural network and generates a preliminary forecast data. Second, it employs SVM for the residual correction calculation for the results based on the preliminary data. The results of practical examples show that the overall relative error of the combined prediction model is no more than 1.5%, which is less than the relative error of the single prediction models. It is hoped that the research can provide a useful reference for the prediction of the sum of container and related studies.

수증기 연직 분포에 의한 GOCI-II 해색 산출물 오차 분석 (Analysis of Uncertainty in Ocean Color Products by Water Vapor Vertical Profile)

  • 이경상;배수정;이은경;안재현
    • 대한원격탐사학회지
    • /
    • 제39권6_2호
    • /
    • pp.1591-1604
    • /
    • 2023
  • 해색 원격탐사에서 대기 보정은 자료의 정확도와 신뢰성 확보를 위해 반드시 수행해야하는 과정으로 높은 정확도가 요구된다. 또한 최근 원격 탐사 커뮤니티에서는 위성 자료의 오차에 대한 요구 사항이 증가함에 따라 대기 보정의 보조 자료로 사용되는 기상 변수(오존량, 기압, 바람장, 층적분 수증기량[total precipitable water, TPW])의 오차에 의해 발생하는 원격 반사도(remote sensing reflectance, Rrs)의 오차에 대한 연구가 진행되고 있지만 오차 요인으로 알려진 수증기 프로파일의 변동성에 의한 Rrs의 오차에 대한 연구는 수행되지 않았다. 본 연구에서는 Second Simulation of a Satellite Signal Vector version 2.1 모의를 통해 GOCI-II 관측 영역 내의 수증기 프로파일의 변동성에 따른 수증기 투과도의 오차를 계산하고 이로 인해 발생하는 해색 산출물의 오차에 대해 분석하였다. Radiosonde 관측 수증기 프로파일은 그 형태가 복잡할 뿐만 아니라 지표 부근의 큰 변동성으로 인해 기존 GOCI-II 대기 보정에서 사용하고 있는 US standard 62 수증기 프로파일과의 차이가 최대 0.007만큼 발생하였다. 이로 인해 발생한 수증기 투과도의 차이는 GOCI-II 대기 보정에서 에어로졸 반사도 추정의 차이를 발생시키고, 결과적으로 모든 밴드에서 Rrs의 오차가 발생하였다. 하지만 412-555 nm 밴드에서 수증기 프로파일 차이로 인한 Rrs 오차는 요구 정확도보다 낮은 2% 미만으로 나타났으며, 다른 해색 산출물인 클로로필(chlorophyll-a) 농도, 용존 유기물, 총 부유물 농도에서도 유사한 오차를 보이고 있다. 본 연구의 결과는 대기 보정 및 해색 산출물의 정확도에 있어 수증기 프로파일의 차이의 영향이 적다는 것을 의미한다. 하지만 추후 연구에서 수증기 흡광 보정 시 수증기 프로파일의 변동성을 고려할 경우 보다 높은 수준의 Rrs 정확도 확보를 기대할 수 있다.

Semiparametric Seasonal Cointegrating Rank Selection

  • Seong, Byeong-Chan;Ahn, Sung-K.;Ch, Sin-Sup
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.791-797
    • /
    • 2011
  • This paper considers the issue of seasonal cointegrating rank selection by information criteria as the extension of Cheng and Phillips (2009). The method does not require the specification of lag length in vector autoregression, is convenient in empirical work, and is in a semiparametric context because it allows for a general short memory error component in the model with only lags related to error correction terms. Some limit properties of usual information criteria are given for the rank selection and small Monte Carlo simulations are conducted to evaluate the performances of the criteria.