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Abstract

This paper considers a generalized method of moments(GMM) estimation for seasonal cointegration as the

extension of Kleibergen (1999). We propose two iterative methods for the estimation according to whether

parameters in the model are simultaneously estimated or not. It is shown that the GMM estimator coin-

cides in form to a maximum likelihood estimator or a feasible two-step estimator. In addition, we derive its

asymptotic distribution that takes the same form as that in Ahn and Reinsel (1994).

Keywords: Generalized method of moments estimation, vector error correction model, vector autore-

gressive model.

1. Introduction

Hylleberg et al. (1990) introduced the concept of seasonal cointegration for seasonal time series

with unit roots at seasonal frequencies, i.e., roots of modulus 1, whereas the concept of usual

cointegration, by Engle and Granger (1987), is for nonseasonal time series with unit roots at zero

frequency, i.e., roots of exactly 1. Since then, many approaches for analyzing seasonal cointegration

have been developed. Among others, Ahn and Reinsel (1994) (AR1994) and Ahn et al. (2004) used

an iterative method considering all the frequencies of seasonal unit roots simultaneously. Johansen

and Schaumburg (1999) considered a switching algorithm based on partial regression, to avoid the

complexity generated with the simultaneous estimation. Cubadda (2001) considered the complex

error correction model, which uses only the nonstationary roots existing on the upper half unit

circle, in order to overcome the complicated algorithm of the previous works.

In the literature for seasonal cointegration, normality is usually adopted for constructing the likeli-

hood function because the maximum likelihood(ML) approach has been the prevalent method for

estimating the cointegrating parameters in vector error correction model(VECM). The popularity

of the ML approach occurs due to its sound theoretical basis, computational simplicity and superior

performance relative to some other estimators (Brüggemann and Lütkepohl, 2005). However, the

potentially poor small-sample performances of the ML estimator(MLE) were pointed out by sev-

eral earlier works, especially, in non-seasonal cointegration analysis. Among others, Phillips (1994)

showed that finite-sample moments of the MLE do not exist and Gonzalo (1994) and Hansen et
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al. (1998) found that the small-sample properties of the MLE are not well approximated by its

asymptotic distribution and in particular, that the MLE produces occasional outliers which are far

away from the true parameter values. In this respect, Seong (2008) considered a simple feasible

two-step (or generalized least squares) estimator for seasonal cointegration which does not produce

the kind of outlying estimates observed for the MLE.

Since empirical distributions of financial and macroeconomic data, frequently analyzed through sea-

sonal cointegration, are skewed and leptokurtic, the inferences, based on the normality assumption,

may no longer have optimal properties and hence be misleading. Recently, econometricians and

financial economists are searching for alternative estimation methods to relax the strong (para-

metric) assumption in data analysis. For the purpose, we may consider a generalized method of

moments(GMM) estimation which needs only certain moment conditions without any parametric

assumptions.

Since the GMM estimation was first introduced by Hansen (1982), its variants have been applied

to numerous fields, including finance and macroeconomics. Kitamura and Philips (1997) developed

the GMM for a nonstationary regression model. Quintos (1998) and Kleibergen (1999) adopted it

for estimating long-run equilibriums in nonseasonal cointegration.

In this paper, we extend the work of Kleibergen to seasonal cointegration. Two iterative methods

for constructing the GMM estimator are proposed according to whether parameters in the model

are simultaneously estimated or not. The first (simultaneous estimation) method considers all the

parameters simultaneously as in AR1994 and, then, the GMM estimator is inexplicitly given by an

iterative equation which takes the same form as that for the MLE. Contrarily, the second (switching

estimation) method classifies the parameters into two groups: stationary or nonstationary. If one

group of parameters is provided as initial values, the other group of parameters is explicitly expressed

as a function of the group. Therefore, the switching estimation can be seen as a kind of feasible two-

step estimation for seasonal cointegration. These two methods are different from that of Kleibergen

in that identification condition for the parameters is given before the first order moment condition

of objective function is obtained. Our methods involve simpler calculations and are more efficient

than that of Kleibergen.

The paper is structured as follows. In Section 2, we propose two iterative GMM estimation methods

for seasonal cointegration. Their asymptotic distributions are derived in Section 3. Section 4

contains proofs of the theorems in Section 3.

2. GMM Estimation for Seasonal Cointegration

Consider the m-dimensional vector AR(VAR) model of order p as follows:

Φ(L)yt =

(
Im −

p∑
j=1

ΦjL
j

)
yt = ϵt, (2.1)

where Im denotes an m ×m identity matrix and L is a lag operator, such that Lyt = yt−1, and

the m-dimensional random vector ϵt is assumed to be independent with E(ϵt) = 0, Cov(ϵt) = Ω,

supt E(|ϵj,t|2+δ) < ∞ for some δ > 0 and j = 1, 2, . . . ,m, and ϵj,t is the jth element of ϵt. We

assume that the roots of the characteristic equation det(Φ(z)) = 0 are on or outside the unit circle.

For simplicity, it is assumed that the process yt is observed on a quarterly basis. Models with other

seasonal periods, e.g., monthly, can be easily implemented as in Ahn et al. (2004). Then, as in



GMM for Seasonal CI 229

AR1994, if we expand (2.1) by Lagrange expansion at seasonal unit roots z = 1, −1, i and −i (i.e.,
frequencies 0, π, π/2 and 3π/2, respectively), we obtain the following VECM:

Φ∗(L)
(
1− L4)yt = α1β

′
1ut−1 + α2β

′
2vt−1 +

(
α3β

′
4 + α4β

′
3

)
wt−1 +

(
−α′

3β
′
3 + α4β

′
4

)
wt−2 + ϵt,

where

ut = (1 + L)
(
1 + L2)yt, vt = (1− L)

(
1 + L2)yt, wt =

(
1− L2)yt

and Φ∗(L) is a matrix polynomial of order p − 4, and αj and βj are m × rj matrices with rank

equal to rj for j = 1, . . . , 4 and r3 = r4. For a unique parameterization, we need to normalize the

βj ’s such that

β′
1 = [Ir1 , β

′
10], β′

2 = [Ir2 , β
′
20], β′

3 = [Ir3 , β
′
30], β′

4 = [Or4 , β
′
40],

where Orj is an rj ×rj matrix of zeros, and βj0’s are (m−rj)×rj matrices of unknown parameters.

Note that r1, r2 and r3(r4) denote the cointegrating ranks at the unit roots 1, −1 and i(−i), respec-
tively, and β′

1ut, β
′
2vt, (β

′
3 + β′

4L)wt and (β′
4 − β′

3L)wt are stationary processes, i.e., cointegrating

relationships.

The VECM can be rewritten in a compact form or regression setting to easily perform the estimation

procedure:

zt = Πxt−1 + ϵt, (2.2)

where

zt =
(
1− L4)yt, Π =

[
α1β

′
1, α2β

′
2, α3β

′
4 + α4β

′
3,−α3β

′
3 + α4β

′
4,Φ

∗
1, . . . ,Φ

∗
p−4

]
,

xt−1 =
[
u′

t−1,v
′
t−1,w

′
t−1,w

′
t−2, z̃

′
t−1

]′
and z̃t−1 =

[
z′
t−1, . . . , z

′
t−(p−4)

]′
.

We can also rewrite the equation in a matrix notation:

Z = ΠX + E,

where

Z = [z1, . . . , zT ] , X = [x0, . . . ,xT−1] =
[
U ′, V ′,W ′,W ∗′, Z̃′

]′
,

U = [u0, . . . ,uT−1] =
[
U ′

1, U
′
2

]′
, V = [v0, . . . ,vT−1] =

[
V ′
1 , V

′
2

]′
,

W = [w0, . . . ,wT−1] =
[
W ′

1,W
′
2

]′
, W ∗ = [w−1, . . . ,wT−2] =

[
W ∗′

1 ,W ∗′
2

]′
,

Z̃ = [z̃0, . . . , z̃T−1] and E = [ϵ1, . . . , ϵT ] .

We now consider the GMM estimator for seasonal cointegration. In regression setting (2.2), we can

obtain the simple orthogonal condition that the regressor of the process is orthogonal to the error.

Hence, the moment condition for GMM estimation is given as

E[mt(θ)] = E
[
vec
(
ϵtx

′
t−1

)]
= 0,

where vec(·) vectorizes a matrix column-wise from left to right. By using the weighting matrix:

V̂T =

(
1

T

T∑
t=1

xt−1x
′
t−1

)
⊗ Ω̂,
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where Ω̂ is a consistent estimator for Ω and ⊗ denotes the Kronecker product, we can obtain the

objective function for the efficient GMM estimator

Q∗
T (θ) = T · vec

(
1

T

T∑
t=1

ϵtx
′
t−1

)′

V̂ −1
T vec

(
1

T

T∑
t=1

ϵtx
′
t−1

)

= vec
(
EX ′)′ (XX ′ ⊗ Ω̂

)−1

vec
(
EX ′) , (2.3)

where

θ =
(
θ′1, θ

′
2

)′
, θ1 = vec

(
β′
10, β

′
20, β

′
30, β

′
40

)
and θ2 = vec

(
α1, . . . , α4,Φ

∗
1, . . . ,Φ

∗
p−4

)′
.

Note that θ1 comprises nonstationary parameters including cointegrating vectors, and θ2 stationary

parameters including adjustment vectors and coefficient matrices related to short run dynamics.

Now we propose two iterative GMM estimation methods for seasonal cointegration.

2.1. Simultaneous estimation method

Due to the nonlinearity of the parameters occurred by the reduced rank structure for Φ(1), Φ(−1)

and Φ(i), we apply a Gauss-Newton method to minimize the objective function Q∗
T (θ). The general

form of the updating equation by the Gauss-Newton method is given by

θ(k+1) = θ(k) −
[(

∂m̄(θ)′

∂θ

)
V̂ −1
T

(
∂m̄(θ)

∂θ′

)]−1 [(
∂m̄(θ)′

∂θ

)
V̂ −1
T m̄(θ)

] ∣∣∣∣
θ(k)

≡ θ(k) − [Ht(θ)]
−1 [Gt(θ)] |θ(k) , (2.4)

where m̄(θ) = 1/T vec(ϵX ′) and θ(k) is an estimate at the previous iteration. In order to obtain the

Hessian and gradient matrices, Ht(θ) and Gt(θ), respectively, in Equation (2.4), we derive ∂ϵt/∂θ
′

and ∂m̄(θ)′/∂θ as follow:

∂ϵt
∂θ′

= −



u2,t−1 ⊗ α′
1

v2,t−1 ⊗ α′
2

w2,t−1 ⊗ α′
4 −w2,t−2 ⊗ α′

3

w2,t−1 ⊗ α′
3 +w2,t−2 ⊗ α′

4

β1ut−1 ⊗ Im
β′
2vt−1 ⊗ Im

(β′
4wt−1 − β′

3wt−2)⊗ Im
(β′

3wt−1 + β′
4wt−2)⊗ Im

z̃t−1 ⊗ Im



′

,

∂m̄(θ)′

∂θ
=

1

T

T∑
t=1

(
∂ϵt
∂θ′

)′

(x′
t−1 ⊗ Im) = − 1

T



U2X
′ ⊗ α′

1

V2X
′ ⊗ α′

2

W2X
′ ⊗ α′

4 −W ∗
2X

′ ⊗ α′
3

W2X
′ ⊗ α′

3 +W ∗
2X

′ ⊗ α′
4

β′
1UX

′ ⊗ Im
β′
2V X

′ ⊗ Im
(β′

4WX ′ − β′
3W

∗X ′)⊗ Im
(β′

3WX ′ + β′
4W

∗X ′)⊗ Im
Z̃X ′ ⊗ Im


≡ − 1

T
F1(θ).
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Therefore, we obtain the following updating equation

θ(k+1) = θ(k) −
[(

∂m̄(θ′)

∂θ

)
V̂ −1
T

(
∂m̄(θ)

∂θ′

)]−1 [(
∂m̄(θ′)

∂θ

)
V̂ −1
T m̄(θ)

] ∣∣∣∣
θ(k)

= θ(k) +

(
F1(θ)

(
XX ′ ⊗ Ω̂T

)−1

F1(θ)
′
)−1 (

F1(θ)
(
XX ′ ⊗ Ω̂T

)−1

m̄(θ)

) ∣∣∣∣
θ(k)

(2.5)

since V̂T = XX ′/T ⊗ Ω̂. This equation coincides in form to the Newton-Raphson equation for the

MLE in AR1994.

2.2. Switching estimation method

Switching method first classifies the unknown parameters into two parameter sets, θ1 and θ2, and

estimates them alternately by using a given parameter set. Specifically, the method is done by the

two following steps. In the first step, give the initial estimators of θ2 and Ω. Then, the VECM can

be represented as follows:

żt = α1β
′
10u2,t−1 + α2β

′
20v2,t−1 + α30β

′
30w2,t−1 + α40β

′
40w2,t−2 + ϵt, (2.6)

where

ż = zt − α1u1,t−1 − α2v1,t−1 − α4w1,t−1 + α3w1,t−2 − Φ∗
1zt−1 − · · · − Φ∗

(p−4)zt−p+4

= zt − α1u1,t−1 − α2v1,t−1 − α4w1,t−1 + α3w1,t−2 − Φ∗z̃t−1.

Therefore, we can construct the moment condition function as

m̄(θ1) =
1

T

T∑
t=1

vec(ϵtx
′
t−1) =

1

T

T∑
t=1

vec(żtx
′
t−1)−

1

T
F2θ1,

where

F2 =



T∑
t=1

(xt−1u
′
2,t−1 ⊗ α1)

′

T∑
t=1

(xt−1v
′
2,t−1 ⊗ α2)

′

T∑
t=1

(xt−1w
′
2,t−1 ⊗ α4 − xt−1w

′
2,t−2 ⊗ α3)

′

T∑
t=1

(xt−1w
′
2,t−1 ⊗ α3 + xt−1w

′
2,t−2 ⊗ α4)

′



′

.

Since m̄(θ1) is linear in θ1, the objective function is quadratic in θ1,

Q∗
T (θ1) =

(
1

T

T∑
t=1

vec(żtx
′
t−1)−

1

T
F2θ1

)′

V̂ −1
T

(
1

T

T∑
t=1

vec(żtxt−1)−
1

T
F2θ1

)
.

The first order condition for minimizing the function with respect to θ1 is

F ′
2V̂

−1
T

T∑
t=1

vec(żtx
′
t−1) = F ′

2V̂
−1
T F2θ1.
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Then, the efficient GMM estimator for θ1 is

θ̃1 =

(
F ′
2

(
XX ′ ⊗ Ω̂

)−1

F2

)−1
(
F ′
2

(
XX ′ ⊗ Ω̂

)−1
T∑

t=1

vec (żtxt−1)

)
. (2.7)

In the second step, by using the estimator of θ1 obtained in the first step, we construct the moment

condition for θ2:

m̄(θ2) =
1

T

T∑
t=1

vec
(
ϵtx

′
t−1

)
=

1

T

T∑
t=1

vec(ztx
′
t−1)−

1

T
F3θ2,

where

F3 =



T∑
t=1

(xt−1u
′
t−1β1 ⊗ α1)

′

T∑
t=1

(xt−1v
′
t−1β2 ⊗ α2)

′

T∑
t=1

((xt−1w
′
t−1β4 − xt−1w

′
t−2β3)⊗ Im)′

T∑
t=1

((xt−1w
′
t−1β3 + xt−1w

′
t−2β4)⊗ Im)′

T∑
t=1

(xt−1z̃t−1)⊗ Im



′

.

Similarly to the first step, since m̄(θ2) is linear in θ2, the GMM estimator for θ2 is given by

θ2 =

(
F ′
3

(
XX ′ ⊗ Ω̂

)−1

F3

)−1
(
F ′
3

(
XX ′ ⊗ Ω̂

)−1
T∑

t=1

vec
(
ztx

′
t−1

))
. (2.8)

These two steps are repeated until the parameter estimates converge.

The switching method is noticeable in that in each step it proposes a closed form of estimators. In

addition it can be seen to be a feasible two-step estimator for seasonal cointegration. Therefore,

as mentioned in Seong (2008), it can be an alternative of the MLE because it does not produce

outlying estimates observed for the MLE.

We remark that when the data dimension(m) or VAR order(p) is large, the switching method is

preferred since the Gauss-Newton iteration of the simultaneous method, in Section 2.1, is more

likely to fail.

3. Asymptotic Distribution of GMM Estimator

In this section we derive the asymptotic distribution for the GMM estimator in the following theo-

rems with their proofs given in Section 4.

Theorem 3.1. Let θ̂ denote the simultaneous GMM estimator for θ obtained from the updating

Equation (2.4). If we use initial consistent estimators, then

T (β̂′
10 − β′

10)
d−→ (α′

1Ω
−1α1)

−1α′
1Ω

−1G̃′
1F

∗
11

−1
,

T (β̂′
20 − β′

20)
d−→ (α′

2Ω
−1α2)

−1α′
2Ω

−1G̃′
2F

∗
22

−1
,

T

(
β̂′
30 − β′

30

β̂′
40 − β′

40

)
d−→

(
F̃33 F̃34

F̃43 F̃44

)−1(
vec(G̃3Ω

−1α4 − G̃4Ω
−1α3)

vec(G̃3Ω
−1α3 − G̃4Ω

−1α4)

)
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and

√
T (θ̂2 − θ2)

d−→ N∗,

where
d−→ denotes the convergence in distribution and vec(N∗) is a normal random vector with

mean 0 and covariance matrix Ω⊗ Γ−1
x̃ for Γx̃ = Cov(x̃t−1) and x̃t−1 = [u′

t−1β1,v
′
t−1β2,w

′
t−1β4 −

w′
t−2β3,w

′
t−1β3 +w′

t−2β4, z̃
′
t−1]

′.

Theorem 3.2. Let θ̃ denote the switching GMM estimator for θ obtained from (2.7) and (2.8).

If initial consistent estimators are given, the asymptotic distribution of θ̃ is the same as that in

Theorem 3.1.

We remark that the GMM estimators are asymptotically equivalent to the MLE; however, their the

finite-sample properties may be very different (Seong, 2008).

4. Proof for Theorems

4.1. Proof of Theorem 3.1

Since M = I −X ′(XX ′)−1X and P = X ′(XX ′)−1X are idempotent and symmetric and XP = X,

UP = U , V P = V , WP = W and W ∗P = W ∗ are satisfied. Using these properties, the first part

of updating Equation (2.4) can be represented as

F1

(
XX ′ ⊗ Ω̂

)−1

F ′
1 =



U2 ⊗ α′
1Ω

−1

V2 ⊗ α′
2Ω

−1

W2 ⊗ α′
4Ω

−1 −W ∗
2 ⊗ α′

3Ω
−1

W2 ⊗ α′
3Ω

−1 +W ∗
2 ⊗ α′

4Ω
−1

β′
1U ⊗ Ω−1

β′
2V ⊗ Ω−1

(β′
4W − β′

3W
∗)⊗ Ω−1

(β′
3W + β′

4W
∗)⊗ Ω−1

Z̃X ′(XX ′)−1 ⊗ Ω−1





U2 ⊗ α′
1

V2 ⊗ α′
2

W2 ⊗ α′
4 −W ∗

2 ⊗ α′
3

W2 ⊗ α′
3 +W ∗

2 ⊗ α′
4

β′
1U ⊗ Im

β′
2V ⊗ Im

(β′
4W − β′

3W
∗)⊗ Im

(β′
3W + β′

4W
∗)⊗ Im

XZ̃′ ⊗ Im



′

.

The second part of updating Equation (2.4) can be represented as

F1

(
XX ′⊗Ω̂

)−1

vec

(
T∑

t=1

ϵtx
′
t−1

)
=



U2X
′(XX ′)−1 ⊗ α′

1Ω
−1

V2X
′(XX ′)−1 ⊗ α′

2Ω
−1

W2X
′(XX ′)−1 ⊗ α′

4Ω
−1 −W ∗

2X
′(XX ′)−1 ⊗ α′

3Ω
−1

W2X
′(XX ′)−1 ⊗ α′

3Ω
−1 +W ∗

2X
′(XX ′)−1 ⊗ α′

4Ω
−1

β′
1UX

′(XX ′)−1 ⊗ Ω−1

β′
2V X

′(XX ′)−1 ⊗ Ω−1(
β′
4WX ′(XX ′)−1 − β′

3W
∗X ′(XX ′)−1

)
⊗ Ω−1(

β′
3WX ′(XX ′)−1 + β′

4W
∗X ′(XX ′)−1

)
⊗ Ω−1(

Z̃X ′ ⊗ Im
)



vec(EX ′)
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=



vec
(
α′
1Ω

−1EX ′(XX ′)−1XU ′
2

)
vec
(
α′
2Ω

−1EX ′(XX ′)−1XV ′
2

)
vec
(
α′
4Ω

−1EX ′(XX ′)−1XW ′
2 − α′

3Ω
−1EX ′(XX ′)−1XW ∗′

2

)
vec
(
α′
3Ω

−1EX ′(XX ′)−1XW ′
2 + α′

4Ω
−1EX ′(XX ′)−1XW ∗′

2

)
vec
(
Ω−1EX ′(XX ′)−1XU ′β1

)
vec
(
Ω−1EX ′(XX ′)−1XV ′β2

)
vec
(
Ω−1EX ′(XX ′)−1X

(
W ′β4 −W ∗′β3

))
vec
(
Ω−1EX ′(XX ′)−1X

(
W ′β3 +W ∗′β4

))
vec
(
EX ′(XX ′)−1XZ̃

)



.

Therefore, we obtain the expression:

F1

(
XX ′ ⊗ Ω̂

)−1

vec

(
T∑

t=1

ϵtx
′
t−1

)
=



vec
(
α′
1Ω

−1EU ′
2

)
vec
(
α′
2Ω

−1EV ′
2

)
vec
(
α′
4Ω

−1EW ′
2 − α′

3Ω
−1EW ∗′

2

)
vec
(
α′
3Ω

−1EW ′
2 + α′

4Ω
−1EW ∗′

2

)
vec
(
Ω−1EU ′β1

)
vec
(
Ω−1EV ′β2

)
vec
(
Ω−1E

(
W ′β4 −W ∗′β3

))
vec
(
Ω−1E

(
W ′β3 +W ∗′β4

))
vec
(
EZ̃′

)



.

The asymptotic distributions can be derived by Lemma 1 in AR1994 (p.327). Let D = diag(D1, D2)

where D1 = diag(TIr1(m−r1), T Ir2(m−r2), T I2r3(m−r3)), D2 = diag(T 1/2Ib) and b is the dimension

of θ2. By using the expressions of ∂ϵt/∂θ
′ and ∂m̄(θ)′/∂θ in Section 2.1, we obtain the following

asymptotic properties:

D−1F1

(
XX ′ ⊗ Ω̂

)−1

F ′
1D

−1 d−→


F̃11 0 0 0 0

0 F̃22 0 0 0

0 0 F̃33 F̃34 0

0 0 F̃43 F̃44 0

0 0 0 0 ΓX̃ ⊗ Ω−1


and

D−1F1

(
XX ′ ⊗ Ω̂

)−1

vec

(
T∑

t=1

ϵtx
′
t−1

)
d−→



vec
(
α′
1Ω

−1G′
1J1
)

vec
(
α′
2Ω

−1G′
2J2
)

vec
(
α′
4Ω

−1G′
3Ji − α′

3Ω
−1G′

4Ji
)

vec
(
α′
3Ω

−1G′
3Ji + α′

4Ω
−1G′

4Ji
)

vec (N∗)

 ,

where

F̃11 = J ′
1F11J1 ⊗ α′

1Ω
−1α1,
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F̃22 = J ′
−1F22J−1 ⊗ α′

2Ω
−1α2,

F̃33 = J ′
iF33Ji ⊗ α′

4Ω
−1α4 − J ′

iF34Ji ⊗ α′
4Ω

−1α3 − J ′
iF43Ji ⊗ α′

3Ω
−1α4 + J ′

iF44Ji ⊗ α′
3Ω

−1α3,

F̃34 = J ′
iF33Ji ⊗ α′

4Ω
−1α3 + J ′

iF34Ji ⊗ α′
4Ω

−1α4 − J ′
iF43Ji ⊗ α′

3Ω
−1α3 − J ′

iF44Ji ⊗ α′
3Ω

−1α4,

F̃43 = F̃ ′
34

and

F̃44 = J ′
iF33Ji ⊗ α′

3Ω
−1α3 + J ′

iF34Ji ⊗ α′
3Ω

−1α4 + J ′
iF43Ji ⊗ α′

4Ω
−1α3 + J ′

iF44Ji ⊗ α′
4Ω

−1α4.

4.2. Proof of Theorem 2.2

When consistent estimators for α1, α2, α3, α4, Φ
∗
j ’s and Ω are given, we obtain

D1

(
θ̃1 − θ1

)
=

(
D−1

1 F ′
2

(
XX ′ ⊗ Ω̂

)−1

F2D
−1
1

)−1(
D−1

1 F ′
2

(
XX ′ ⊗ Ω̂

)−1
) T∑

t=1

vec
(
ϵtx

′
t−1

)
. (4.1)

Then, by using the lemma in AR1994, asymptotic property of the first part of Equation (4.1) can

be derived as follows:(
D−1

1 F ′
2

(
XX ′ ⊗ Ω̂

)−1

F2D
−1

)−1

=

D−1
1


U2X

′ ⊗ α′
1

V2X
′ ⊗ α′

2

W2X
′ ⊗ α′

4 −W ∗
2X

′ ⊗ α3

W2X
′ ⊗ α′

3 +W ∗
2X

′ ⊗ α′
4


(
XX ⊗ Ω̂

)−1


U2X

′ ⊗ α′
1

V2X
′ ⊗ α′

2

W2X
′ ⊗ α′

4 −W ∗
2X

′ ⊗ α3

W2X
′ ⊗ α′

3 +W ∗
2X

′ ⊗ α′
4


′

D−1


−1

d−→


F̃11

F̃22

F̃33 F̃34

F̃43 F̃44


−1

.

Similarly, asymptotic distribution of the second part of Equation (4.1) is given as follows:

D−1
1 F ′

2

(
XX ′ ⊗ Ω̂

)−1
T∑

t=1

vec
(
ϵtx

′
t−1

)
= D−1

1



vec
(
α′
1Ω̂

−1EU ′
2

)
vec
(
α′
2Ω̂

−1EV ′
2

)
vec
(
α′
4Ω̂

−1EW ′
2 − α′

3Ω̂
−1EW ∗

2
′
)

vec
(
α′
3Ω̂

−1EW ′
2 + α′

4Ω̂
−1EW ∗

2
′
)



d−→



vec
(
α′
1Ω̂

−1G′
1J1
)

vec
(
α′
2Ω̂

−1G′
2J2
)

vec
(
α′
4Ω̂

−1G′
3Ji − α′

3Ω̂
−1G′

4Ji
)

vec
(
α′
3Ω̂

−1G′
3Ji + α′

4Ω̂
−1G′

4Ji
)


.

Alternately, when the consistent estimators for β1, β2, β3, β4 and Ω are given,

D2

(
θ̃2 − θ2

)
=

(
D−1

2 F ′
3

(
XX ′ ⊗ Ω̂

)−1

F3D
−1
2

)−1
(
D−1

2 F ′
3

(
XX ′ ⊗ Ω̂

)−1
T∑

t=1

vec
(
ϵtx

′
t−1

))
. (4.2)
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Then, asymptotic distribution of the first part of Equation (4.2) is given as follows:(
D−1

2 F ′
3

(
XX ′ ⊗ Ω̂

)−1

F3D
−1
2

)−1

=


D−1

2



β′
1UX

′ ⊗ Im

β′
2V X

′ ⊗ Im

(β′
4WX ′ − β′

3W
∗X ′)⊗ Im

(β′
3WX ′ + β′

4W
∗X ′)⊗ Im

Z̃X ⊗ Im


(
XX ′ ⊗ Ω̂

)−1



β′
1UX

′ ⊗ Im

β′
2V X

′ ⊗ Im

(β′
4WX ′ − β′

3W
∗X ′)⊗ Im

(β′
3WX ′ + β′

4W
∗X ′)⊗ Im

Z̃X ′ ⊗ Im



′

D−1
2



−1

d−→ ΓX̃ ⊗ Ω−1

and that of the second part is given as follows:

D−1
2 F ′

3

(
XX ′ ⊗ Ω̂

)−1
T∑

t=1

vec
(
ϵtx

′
t−1

)
= D−1

2



vec
(
Ω̂−1EU ′β1

)
vec
(
Ω̂−1EV ′β2

)
vec
(
Ω̂−1E(W ′β4 −W ∗′β3)

)
vec
(
Ω̂−1E(W ′β3 +W ∗′β4)

)
vec
(
EZ̃′

)


d−→ vec(N∗).
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