• 제목/요약/키워드: vector data

검색결과 3,324건 처리시간 0.024초

Selective Encryption Algorithm Based on DCT for GIS Vector Map

  • Giao, Pham Ngoc;Kwon, Gi-Chang;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제17권7호
    • /
    • pp.769-777
    • /
    • 2014
  • With the rapid interest in Geographic Information System (GIS) contents, a large volume of valuable GIS dataset has been distributed illegally by pirates, hackers, or unauthorized users. Therefore the problem focus on how to protect the copyright of GIS vector map data for storage and transmission. At this point, GIS security techniques focusing on secure network and data encryption have been studied and developed to solve the copyright protection and illegal copy prevention for GIS digital map. But GIS vector map data is very large and current data encryption techniques often encrypt all components of data. That means we have encrypted large amount of data lead to the long encrypting time and high complexity computation. This paper presents a novel selective encryption scheme for GIS vector map data protection to store, transmit or distribute to authorized users using K-means algorithm. The proposed algorithm only encrypts a small part of data based on properties of polylines and polygons in GIS vector map but it can change whole data of GIS vector map. Experimental results verified the proposed algorithm effectively and error in decryption is approximately zero.

A Note on Support Vector Density Estimation with Wavelets

  • Lee, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권2호
    • /
    • pp.411-418
    • /
    • 2005
  • We review support vector and wavelet density estimation. The relationship between support vector and wavelet density estimation in reproducing kernel Hilbert space (RKHS) is investigated in order to use wavelets as a variety of support vector kernels in support vector density estimation.

  • PDF

Selective Encryption Algorithm for Vector Map using Geometric Objects in Frequency Domain

  • Pham, Ngoc-Giao;Kwon, Ki-Ryong;Lee, Suk-Hwan;Woo, Chong-Ho
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1312-1320
    • /
    • 2017
  • Recently, vector map data is developed and used in many domains widely. In the most cases, vector map data contains confidential information which must be kept away from unauthorized users. Moreover, the production process of vector maps is considerably complex and consumes a lot of money and human resources. Therefore, the secured storage and transmission are necessary to prevent the illegal copying and distribution from hacker. This paper presents a selective encryption algorithm using geometric objects in frequency domain for vector map data. In the proposed algorithm, polyline and polygon data in vector map is the target of the selective encryption process. Experimental results verified that proposed algorithm is effectively and adaptive the requirements of security.

Semi-supervised regression based on support vector machine

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권2호
    • /
    • pp.447-454
    • /
    • 2014
  • In many practical machine learning and data mining applications, unlabeled training examples are readily available but labeled ones are fairly expensive to obtain. Therefore semi-supervised learning algorithms have attracted much attentions. However, previous research mainly focuses on classication problems. In this paper, a semi-supervised regression method based on support vector regression (SVR) formulation that is proposed. The estimator is easily obtained via the dual formulation of the optimization problem. The experimental results with simulated and real data suggest superior performance of the our proposed method compared with standard SVR.

퍼지 원 클래스 서포트 벡터 머신 (Fuzzy One Class Support Vector Machine)

  • 김기주;최영식
    • 인터넷정보학회논문지
    • /
    • 제6권3호
    • /
    • pp.159-170
    • /
    • 2005
  • OC-SVM(One Class Support Vector Machine)은 주어진 전체 데이터의 분포를 측정하는 대신에. 데이터 분포의 서포트(support)를 측정하는 기술로서 주어진 데이터를 가장 잘 설명할 수 있는 최적의 서포트 벡터(support vector)를 구하는 기술이다. OC-SVM은 데이터 분포의 표현에 아주 뛰어난 접근 방법이지만, 사람의 주관적인 중요도를 반영하는 것은 힘들다. 본 논문에서는 각 데이터에 퍼지 맴버쉽(fuzzy membership)을 적용하여 기존의 OC-SVM에 사용자의 주관적인 중요도를 표현할 수 있는 FOC-SVM(Fuzzy One class Support Vector Machine)을 유도 하였다. FOC-SVM은 데이터들을 동등하게 다루는 것이 아니라, 데이터 객체의 중요도에 따라 데이터를 다룬다. 즉, 덜 중요한 데이터의 특징 벡터는 OC-SVM의 처리과정에 덜 기여하도록 하기 위하여, 객체의 중요도에 따라 특징 벡터의 크기를 조정하였다. 이를 증명하기 위하여 가상의 데이터를 가지고 실험을 하였고, 실험 결과는 예측된 결과를 보여 주었다.

  • PDF

Bio-vector Generation Framework for Smart Healthcare

  • Shin, Yoon-Hwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.107-113
    • /
    • 2016
  • In this paper, by managing the biometric data is changed with the passage of time, a systematic and scientifically propose a framework to increase the bio-vector generation efficiency of the smart health care. Increasing the development of human life as a medicine and has emerged smart health care according to this. Organic and efficient health management becomes possible to generate a vector when the biological domain to the wireless communication infrastructure based on the measurement of the health status and to take action in accordance with the change of the physical condition. In this paper, we propose a framework to create a bio-vector that contains information about the current state of health of the person. In the proposed framework, Bio vectors may be generated by collecting the biometric data such as blood pressure, pulse, body weight. Biometric data is the raw data from the bio-vector. The scope of the primary data can be set to active. As the collecting biometric data from multiple items of the bio-recognition vectors may increase. The resulting bio-vector is used as a measure to determine the current health of the person. Bio-vector generating the proposed framework, it can aid in the efficiency and systemic health of healthcare for the individual.

Expected shortfall estimation using kernel machines

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권3호
    • /
    • pp.625-636
    • /
    • 2013
  • In this paper we study four kernel machines for estimating expected shortfall, which are constructed through combinations of support vector quantile regression (SVQR), restricted SVQR (RSVQR), least squares support vector machine (LS-SVM) and support vector expectile regression (SVER). These kernel machines have obvious advantages such that they achieve nonlinear model but they do not require the explicit form of nonlinear mapping function. Moreover they need no assumption about the underlying probability distribution of errors. Through numerical studies on two artificial an two real data sets we show their effectiveness on the estimation performance at various confidence levels.

벡터 맵 데이터의 정확성과 위상을 고려한 디지털 워터마킹 (Digital Watermarking of 2D Vector Map Data for the Accuracy and Topology of the Data)

  • 김정엽;박수홍
    • Spatial Information Research
    • /
    • 제17권1호
    • /
    • pp.51-66
    • /
    • 2009
  • 정보통신 기술의 발달과 더불어 여러 데이터를 디지털화함에 따라 데이터 소유자의 권리를 보호하고자 하는 저작권 보호에 대한 관심이 많아졌다. 디지털 워터마킹은 저작권 보호를 위한 강력한 방법 중에 하나이다. GIS에서 많이 사용되는 벡터 맵 데이터에 대한 저작권 보호를 위해 본 연구에서는 새로운 디지털 워터마킹 기법을 제안하고자 한다. 제안하는 방법은 CRC의 원리를 이용하여 워터마크를 삽입하고 검출하는 방법으로 실험 결과 여러 공격에서도 삽입한 워터마크를 검출하여 데이터 소유권을 보호할 수 있음을 알 수 있었다. 따라서 제안하는 방법은 벡터 맵 데이터의 소유권을 보호하기 위한 방법으로 활용 가능할 것으로 기대된다.

  • PDF

Selective Encryption Scheme for Vector Map Data using Chaotic Map

  • Bang, N.V.;Moon, Kwang-Seok;Lim, Sanghun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제18권7호
    • /
    • pp.818-826
    • /
    • 2015
  • With the rapid interest in Geographic Information System (GIS) contents, a large volume of valuable GIS dataset has been distributed illegally by pirates, hackers, or unauthorized users. Therefore the problem focus on how to protect the copyright of GIS vector map data for storage and transmission. But GIS vector map data is very large and current data encryption techniques often encrypt all components of data. That means we have encrypted large amount of data lead to the long encrypting time and high complexity computation. This paper presents the selective encryption scheme using hybrid transform for GIS vector map data protection to store, transmit or distribute to authorized users. In proposed scheme, polylines and polygons in vector map are targets of selective encryption. We select the significant objects in polyline/polygon layer, and then they are encrypted by the key sets generated by using Chaotic map before changing them in DWT, DFT domain. Experimental results verified the proposed algorithm effectively and error in decryption is approximately zero.

Vector Map Data Watermarking Method using Binary Notation

  • Kim, Jung-Yeop;Park, Soo-Hong
    • Spatial Information Research
    • /
    • 제15권4호
    • /
    • pp.385-395
    • /
    • 2007
  • 컴퓨터의 사용과 인터넷이 발달로 인해 데이터의 사용과 공유가 매우 증가하고 있으며, 그에 따라 불법적인 데이터의 보급도 발생하고 있다. 본 연구에서는 이러한 불법적인 데이터의 복제 문제를 해결하기 위해 디지털 워터마킹 기법을 제안한다. 특히, GIS에서 많이 사용하고 있는 데이터인 벡터데이터에 워터마크를 삽입하고, 소유권을 주장할 수 있는 워터마킹 방법을 제안한다. 연구에서 제안한 방법은 벡터데이터의 좌표에 이진 연산을 이용하여 워터마크를 직접 삽입을 하고, 워터마크를 삽입하는 역과정을 통해 워터마크를 추출하는 것이다. 실험 결과를 통해 제안한 방법이 벡터데이터에 대한 다양한 공격에 대해 강인함을 알 수 있었다.

  • PDF