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A Note on Support Vector Density Estimation 

with Wavelets1)
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Abstract

We review support vector and wavelet density estimation. The 
relationship between support vector and wavelet density estimation in 
reproducing kernel Hilbert space (RKHS) is investigated in order to use 
wavelets as a variety of support vector kernels in support vector density 
estimation.
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1. Introduction and Preliminaries

The support vector method is a tool for solving multidimensional function 

estimation problems. It was developed in Russia in the sixties by Vapnik and 

co-workers(Vapnik and Lerner(1963), Vapnik and Chervonenkis(1964)). It was 

initially designed to solve pattern recognition problems, where one selects some 

(small) subset of the training data, called the support vectors, to find a decision 

rule with good generalization ability. Later the support vector method was 

extended to regression and real-valued function estimation. The support vector 

method is a very powerful method in a wide variety of applications and gives a 

new opportunity for solving probability density function estimation problem.  

Let us review the support vector regression algorithm for nonlinear function 

estimation( see, for example, Vapnik(1995), Vapnik et al(1997), Smola and 

Schölkopf( 1998)). The algorithm can be directly applied to support vector methods 

for probability density function estimation. The support vector regression algorithm  
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computes a nonlinear function in the space of the input data ℝm  by using a 

linear function in high dimensional feature space ℱ with a dot product. The 

functions take the form f(x)= ω․Φ(x)+b  with Φ :ℝ
m → ℱ  and ω∈ℱ. In 

order to estimate f(x)  from a training set

{ ( x i, y i)∣ i= 1,…,n, x i∈ℝ
m, y i∈ℝ }, one tries to minimize the empirical 

risk function R emp (f)  together with a complexity term ||ω ||
2, i.e. to minimize

R reg (f )= R emp (f )+λ ||ω ||
2=

1
n ∑

n

i=1
c(f(x i ),y i )+λ ||ω ||

2         (1.1)

with c(f(x i),y i)  being the cost function and λ  being a regularization constant. 

For the  ε-insensitive cost functions(see Vapnik(1995))

c(f(x),y)= { ∣f(x)-y∣-ε   for∣f(x)-y∣≥ε 0                otherwise,
             (1.2) 

equation (1.1) can be minimized by solving  quadratic programming problem 

formulated in terms of dot products in ℱ.  It turns out that the solution can be 

expressed in terms of support vectors, 

ω= ∑
n

i=1
α iΦ (x i),                            (1.3)

and hence

f(x)= ∑
n

i=1
α i (Φ (x i)․Φ(x))+b= ∑

n

i=1
α i k(x i,x)+b

where k(x i,x)  is a kernel function to compute a dot product in feature space(see 

Vapnik(1995)). The coefficients α i's can be found by solving a quadratic 

programming problem (with Kij = k( x i,x j)  and α i = β i
*-β i):

maximize -
1
2 ∑

n

i, j=1
( β i

*-β i)( β j
*-β j) Kij+ ∑

n

i=1
( β i

*-β i)y i- ∑
n

i=1
( β i

*+β i)ε

subject to ∑
n

i=1
(β i- β i

*
)=0, β i, β i

*
∈[0,

1
λn
].  

Note that (1.2) is not the only possible choice of cost functions resulting in a 

quadratic programming problem (see Schölkopf and Smola(2002)). The remained 

question is which functions k(x,y)  correspond to a dot product in some feature 
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space ℱ. Mercer theorem (1909) indicates that any continuous symmetric function 

k(x,y)  may be used as an admissible support vector kernel( Mercer kernel) if it 

satisfies Mercer's condition

⌠
⌡
⌠
⌡k(x,y)g(x)g(y)dxdy≥0 for all g∈L 2(ℝ

m
).

2. Support vector  density estimation 

Weston et al(1999) proposed support vector method for probability density 

function estimation. The method is briefly introduced for later use. Consider the 

following linear operation equations

Ap( t)=⌠⌡

x

-∞
p(t)dt=F(x),                    (2.1)

where operator A  is a linear mapping from a Hilbert space function p( t)  to a 

Hilbert space of function F(x).  They used a regression problem in the image 

space (F(x,ω))to estimate p( t). Choose a set of density functions p( t,ω)  to 

solve the problem in the pre-image space that are linear in the flattening space as 

follows:

p( t,ω)= ∑
∞

r=0
ω r φ r (t)=(ω․Φ( t)), where Φ( t)= ( φ 0 (t),…, φ m (t),…).

Each p( t,ω)  can be thought of as a hyperplane in this flattening space, where 

ω=( ω 0,…, ω m,…)  are the coefficients to the hyperplane. Then F(x,ω)  can 

be expressed as a linear combination of functions in the image Hilbert space as 

follows:

F(x,ω)=Ap( t,ω)= ∑
∞

r=0
ω r ψ r(x)= ω․Ψ(x), 

where Ψ(x)= ( ψ 0 (x),…, ψ m (x),…)  and ψ r(x) = A φ r (x). Thus the 

probability density function estimation is equivalent to estimating coefficients 

vector ω  in the image space.  Let { ( x i, y i)∣ i= 1,…,n, x i∈ℝ, y i∈ℝ } be 

a training set with y i =Fn(x i)(=empirical distribution function) and
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ε i=λ σ̂ i=λ
1
n
Fn(x i)(1-Fn(x i))  where λ  is usually chosen to be 1.  Finally 

they used the support vector regression method in section 1 as follows :

maximize - 1
2 ∑

n

i,j=1
( β i

*
-β i)( β j

*
-β j) k(x i,x j)+ ∑

n

i=1
y i (β

*
i -β i)- ∑

n

i=1
ε i (β

*
i +β i)

subject to the constraints 

∑
n

i=1
(β *i -β i) = 0, 0≤ β i

*,β i≤C,   i=1,…,n; α i= β i
*-β i.

These coefficients define the estimator to the density 

p̂( t) =∑
n 0

i= 1
α i
0
(Ψ( x i

0
)⋅Φ( t))

where, by equation (1.3), ω= ∑
n

i=1
α iΨ(x i)  and x i

0  are the n 0≤n  support 

vectors with corresponding non-zero coefficients α i
0.

3. Support vector density estimation by wavelets. 

Wavelet density estimation methods have been introduced  by Doukan and 

Leon(1990), Kerkyacharian and Picard(1992), and Donoho et al(1996). These authors 

have demonstrated the virtues of wavelet methods  in the context of the 

achievability of very good convergence rates uniformly over exceptionally large 

function space.  There are several important families of wavelets( for example, 

Haar's wavelets,  Meyer's wavelets, Franklin's wavelets, Daubechies' compactly 

supported wavelets). In this section our main interests are restricted to projection 

kernels derived from an L 2(R)  multiresolution. Such kernels are reproducing 

kernels(see Lemma 3.1). Reproducing kernel Hilbert space( RKHS) with 

reproducing kernel can be used  in curve fitting, function estimation, and density 

estimation as useful objects. It is briefly introduced for our purpose(see  

Walter(1994), Wahba(1990)). A (real) RKHS Η  is a Hilbert space of real-valued 

functions f  on an interval τ  with the property that, for each t∈τ, the evaluation 

functional L t , which associates f  with f( t ), Lt : f → f( t), is a bounded linear 

functional. Then, by Riesz representation theorem,  for each t∈τ  there exists a 

unique element k t∈ Η  such that for each f∈Η, Lt ( f ) = f( t ) =< f, k t >. The 

function defined by k(u,v ) = < ku , kv >  for u,v∈τ  is the reproducing kernel. 
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Let us review wavelet density estimation( see, Walter(1994), Kerkyacharian and 

Picard(1990)). We can construct a function ϕ(called a father wavelet) such that :

(1) The sequence {ϕ (x-k), k∈Z }  is an orthonormal family of L 2 (R)  and 

⌠
⌡ϕ =1

.  Let us call V 0  the subspace spanned by this sequence.

(2) ∀j ∈Z, Vj ⊂ Vj+1, if Vj  denotes the subspaces spanned by the sequence

{ ϕ j,k , k∈Z }, ϕ j,k (x ) = 2
j/2ϕ ( 2 jx-k ).

Then we have ∩
j∈z
Vj= { 0 }  and L

2 (R ) = ∪
j∈z
Vj (= closure of ∪

j∈z
Vj ).

It is possible to require in addition that one of the following conditions holds :

(a) ϕ  is r  times differentiable and its derivatives are continuous, ϕ ∈ Cr, and 

ϕ  and all its derivatives up to the order r  are rapidly decreasing. 

(b) ϕ  is of class Cr  compactly supported( Daubechies's wavelet, 

Daubechies(1992)).

Let us define the space Wj  by Vj+1 = Vj⊕ Wj  in this conditions, where Wj  is 

the orthogonal complement of Vj  in Vj+1  and ⊕  represents the orthogonal 

sum of two subspaces. Then there exists a function ψ(called a mother wavelet ) 

such that :

(1) {ψ (x-k ), k∈Z }  is an orthonormal basis of W 0,

(2) The family { ψ j,k, k,j∈Z } is an orthonormal basis of L
2 (R )  if ψ j,k (x ) =    

     2 j/2 ψ (2 j x-k ).

Then  L 2 (R ) =Vj0 ⊕ Wj0 ⊕ Wj0+1 ⊕ …,  and

          ∀f∈L 2 (R ), f = ∑
k∈Z
α j 0,kϕ j 0,k + ∑j≥j 0

∑
k∈Z
β j,kψ j,k   

where α j 0,k =
⌠
⌡f (x ) ϕ j 0,k (x )dx

, β j,k =
⌠
⌡f (x ) ψ j,k (x )dx

, j≥j 0.

Let us introduce the following projectors and their associated kernels :

f∈L 2 (R ) → Pj f ( =  projection of f  onto Vj  )

        =∑k
< f, ϕ j,k > ϕ j,k (x )

=∑
k
(⌠⌡f (y ) 2

j/2 ϕ (2 j y-k ) dy )×ϕ j,k (x )

        =
⌠
⌡ { 2

j
∑
k
ϕ (2

j
x-k ) ϕ (2

j
y-k ) } f (y ) dy

=⌠⌡Kj (x, y ) f (y ) dy, where Kj (x, y )=2
j
∑
k
ϕ (2 j x-k ) ϕ (2 j y-k ).

Then from the above facts we can obtain the  following important lemma for 

RKHS.

Lemma 3.1.  Vj  and Wj  is reproducing kernel Hilbert spaces with reproducing 
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kernels Kj (x, y )  and 2
j
∑
k
ψ (2 j x-k ) ψ (2 j y-k )  respectively.

proof. Let f∈Vj. Then,

            < f(x), 2 j∑
k
ψ (2 j x- k ) ψ (2 j t- k ) >

                  = < 2 j/2∑
k
c k ψ (2

j x- k ), 2 j∑
k
ψ (2 j x- k ) ψ (2 j t- k ) >  

where c k=< f(x), 2
j/2
∑
k
ψ (2 j x- k ) >

          = ∑
k
< c k 2

j/2 ψ (2 j x- k ), 2 j ψ (2 j x- k ) ψ (2 j t- k ) >

          = ∑
k
c k 2

j/2 ψ (2 j t- k )

          = f( t).

Similarly it can be proved for Wj.

Notice that reproducing kernel Kj (x, y )  can be used as a kernel function 

k(x i,x j)  in Section 1 and 2 in order to compute a dot product in feature space.  

Hence  probability density function estimation in support vector method can be 

considered as an optimization problem in a RKHS. The following theorem is 

obtained as a special case of the representer theorem in  Kimeldorf and 

Wahba(1971). 

Theorem 3.2. Let f∈Vj  and let { ( x i, y i)∣ i= 1,…,n, x i∈ℝ, y i∈ℝ } be a 

training set. Then any solution to the problem : find f  to minimize    

R reg (f)= R emp (f)+λ ||ω||
2
=
1
n ∑

n

i=1
c(f(x i),y i)+λ ||ω||

2

has a representation of the form 

f(⋅)= ∑
n

i=1
d i K j (x i,⋅), Kj(x i,⋅) = 2

j
∑
k
ϕ (2 j x i-k ) ϕ (2

j⋅-k ),

where

f(t)=∑
k
ω k ϕ j,k  and c(f(x),y)= { ∣f(x)-y∣-ε   for∣f(x)-y∣≥ε 0                otherwise

 

and d i  can be found by applying the SV method in Section 1. 

proof. By Applying Lemma 3.1 and support vector regression method in Section 1 

to the representer theorem in  Kimeldorf and Wahba(1971), the theorem is proved.

Let x 1,x 2,…,xn  be a random sample from probability density function p( t)  
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and distribution function F( t)=⌠⌡

t

-∞
p(x)dx  in the subspace Vj. Let

y i =Fn(x i)(=empirical distribution function) and

ε i=λ σ̂ i=λ
1
n
Fn(x i)(1-Fn(x i)). Then the above theorem indicates that 

F̂( t ) has a representation of the form F̂( t)= ∑
n

i=1
d i K j (x i, t )  and p̂( t) has a 

representation of the form p̂( t)= ∑
n

i=1
d i
d
dt
K j (x i,t ). Since Vj⊂ L

2(R)  and 

L 2 (R ) =Vj⊕ Wj⊕ Wj+1 ⊕ …,    p̂( t) can be a good estimator of probability 

density function with an appropriate selection of subspaceVj. In the view of the 

mean integrated squared error of an estimator,  p̂( t) =
1
n ∑

n

i=1
Kj(x i, t)  is a good 

estimator in some function spaces(see, for example, Kerkyacharian and 

Picard(1992), Donoho et al(1996)). 

4.  Concluding remarks

In support vector methods an important choice is support kernels. Weston et 

al(1999) considered the set of constant splines with infinite number of nodes in 

density estimation. Vapnik et al(1997) considered the set of splines of order d  

with an infinite number of nodes in function estimation. As Theorem 3.2 indicates, 

a variety of wavelets can be used as support kernels  in support vector density 

estimation. Wavelets have many practical and theoretical advantages over the 

classical systems. For large sample it is known to outperform classical density 

estimators in representing discontinuities and local oscillations. It gives better 

localization properties as well as better convergence properties. Thus we can 

expect the same results in support vector density estimation. There is much work 

on this topic. Simulation studies for a variety of wavelet-based kernels and 

probability density functions is left for further work.  
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