• Title/Summary/Keyword: vasorelaxation

Search Result 127, Processing Time 0.026 seconds

Pharmacological Action of Adenosine on the Cardiovascular System (Adenosine의 심장 및 혈관에 대한 약리작용)

  • Ann, Hyung-Soo;Lee, Young-Me
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.1
    • /
    • pp.6-13
    • /
    • 2011
  • Bolus intravenous injection of adenosine resulted the temporal decrease of systemic blood pressure and heart rate in the anesthetized rats. Adenosine also resulted the persistent decrease of contractility and heart rate in the isolated spontaneously beating rat right atria. Both of the above inhibition effets of adenosine were increased by the pretreatment of NBI (nitrobenzylthioinosine), whitch is an adenosine transport inhibitor, but decreased by the pretreatment of 8- phenyltheophy1line, which is an adenosine antagonist. In isolated thoracic aorta ring segment of normotensive rats, intact rings were relaxed by adenosine ($42.3{\pm}8.7%$) and ATP ($85.9{\pm}15.8%$) in the concentration of $10^{-4}M$, but rubbed rings were relaxed by adenosine ($35.2{\pm}1.9%$) and ATP ($11.3{\pm}9.0%$) in $10^{-4}M$. After pretreatment of L-NAME (N-Nitro-Larginine methyl ester), which is an NO inhibitor, adenosine-induced relaxation was not affected, but ATP-induced relax ation was significantly inhibited (P<0.01). Meanwhile, adenosine resulted almost same as vasorelaxation in isolated thoracic aorta of SHR comparing to those of normotensive rats. But, vasodilation responses of ATP in intact rings of SHR are significantly inhibited comparing to those of normotensive rats. Adenosine-induced relaxation is attenuated after 8-phenyltheophylline pretreatment, but increased after NBI pretreatment. However, ATP-induced relaxations are not affected by 8-phenyltheophylline or NBI pretreatment. These results suggested that the hypotensive effects of adenosine was due to the decrease of contractile force and heart rate through the A1 receptor and vasodilation are mediated by A2 receptor of the vascular smooth muscle. And, the heart protective and vasodilation effects of adenosine might suggest that it would be useful in the acute treatment of coronary artery disease.

Moderate and Deep Hypothermia Produces Hyporesposiveness to Phenylephrine in Isolated Rat Aorta

  • Cho, Jun Woo;Lee, Chul Ho;Jang, Jae Seok;Kwon, Oh Choon;Roh, Woon Seok;Kim, Jung Eun
    • Journal of Chest Surgery
    • /
    • v.46 no.6
    • /
    • pp.402-412
    • /
    • 2013
  • Background: Moderate and severe hypothermia with cardiopulmonary bypass during aortic surgery can cause some complications such as endothelial cell dysfunction or coagulation disorders. This study found out the difference of vascular reactivity by phenylephrine in moderate and severe hypothermia. Methods: Preserved aortic endothelium by excised rat thoracic aorta was sectioned, and then down the temperature rapidly to $25^{\circ}C$ by 15 minutes at $38^{\circ}C$ and then the vascular tension was measured. The vascular tension was also measured in rewarming at $25^{\circ}C$ for temperatures up to $38^{\circ}C$. To investigate the mechanism of the changes in vascular tension on hypothermia, NG-nitro-L-arginine methyl esther (L-NAME) and indomethacin administered 30 minutes before the phenylephrine administration. And to find out the hypothermic effect can persist after rewarming, endothelium intact vessel and endothelium denuded vessel exposed to hypothermia. The bradykinin dose-response curve was obtained for ascertainment whether endothelium-dependent hyperpolarization factor involves decreasing the phenylnephrine vascular reactivity on hypothermia. Results: Fifteen minutes of the moderate hypothermia blocked the maximum contractile response of phenylephrine about 95%. The vasorelaxation induced by hypothermia was significantly reduced with L-NAME and indomethacin administration together. There was a significant decreasing in phenylephrine susceptibility and maximum contractility after 2 hours rewarming from moderate and severe hypothermia in the endothelium intact vessel compared with contrast group. Conclusion: The vasoplegic syndrome after cardiac surgery might be caused by hypothermia when considering the vascular reactivity to phenylephrine was decreased in the endothelium-dependent mechanism.

Role of Endogenous Nitric Oxide in the Control of Salivary Secretion and Blood Flow (타액분비 및 선혈류 조절에 대한 내인성 산화질소의 역할)

  • Nam, Sang-Chae;Kim, Mi-Won;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.809-816
    • /
    • 1997
  • The present study was designed to investigate whether endogenous nitric oxide(EDNO) is involved in submandibular vasodilation and salivation induced by parasympathetic nerve stimulation. Effects of $N^w$-nitro-L-arginine-methyl ester (L-NAME) which blocks the synthesis of EDNO from L-arginine on the submandibular vasodilation and salivation induced by chords stimulation or administration of various vasodilators were examined in anesthetized cats. Effect of L-NAME on $K^+$ efflux induced by carbachol was also examined using the excised submandibular slice in vitro. In the submandibular slices, acetylcholine$(10^{-5}\;mol/L)$ or vasoactive intestinal polypeptide$(VIP,\;10^{-5}\;mol/L)$ increased $NO_2$ contents, which was Prevented by pretreatment with L-NAME. Salivary secretion in response to the chords stimulation$(3\;V,\;1\;msec,\;10{\sim}20\;Hz)$ was completely blocked by treatment with atropine(1 mg/kg). Increased blood flow response to the low frequency(1, 2, 5 Hz) stimulation was significantly reduced, whereas the blood flow induced by the higher frequency(10,20 Hz) stimulation was not affected. Lingual-arterial infusion of L-NAME(100 mg/kg) significantly diminished the vasodilatory and salivary responses to the chorda stimulation at all stimuli frequencies used. Intra-arterial infusion of L-NAME(100 mg/kg markedly diminished the vasodilatory responses to acetylcholine$(5\;{\mu}g/kg)$, VIP$(5\;{\mu}g/kg)$ or bradykinin$(5\;{\mu}g/kg)$. In the excised submandibular slice, $K^+$ efflux in response to carbachol$(10^{-5}\;mol/L)$ was significantly decrease by pretreatment with L-NAME$(10^{-5}\;mol/L)$. In the isolated submandibular artery precontracted with phenylephrine$(10^{-5}\;mol/L)$, the vasorelaxation induced by ACh$(10^{-7}\;mol/L)$ was reversed into a contraction by methylene blue$(10^{-4}\;mol/L)$. These results suggest that EDNO may play an important role in vasodilation and secretion of the submandibular gland.

  • PDF

Green Tea Extract (CUMC6335), not Epigallocatechin Gallate, Cause Vascular Relaxation in Rabbits

  • Lim, Dong-Yoon;Baek, Young-Joo;Lee, Eun-Bang
    • Natural Product Sciences
    • /
    • v.10 no.5
    • /
    • pp.228-236
    • /
    • 2004
  • The aim of the present study was to examine whether green tea extract (CUMC6335) affects the blood pressure and the isolated aortic contractility of the rabbit in comparison with one of the most powerful active catechins, epigallocatechin gallate (EGCG). The phenylephrine $(1-10\;{\mu}M)-induced$ contractile responses were greatly inhibited in the presence of CUMC6335 (0.3-1.2 mg/ml). Also, high potassium (56 mM)-induced contractile responses were depressed in high concentration (0.6-1.2 mg/ml), but not affected in low concentration CUMC6335 (0.3 mg/ml). However, epigallocatechin gallate $(EGCG,\;4-12\;{\mu}g/ml)$ did not affect the contractile responses evoked by phenylephrine and high $K^+$. The infusion of CUMC6335 with a rate of 20 mg/kg/30 min made a significant reduction in pressor responses induced by intravenous norepinephrine. However, EGCG (1 mg/kg/30 min) did not affect them. Collectively, these results obtained from the present study suggest that intravenous CUMC6335 causes depressor action in the anesthetized rat at least partly through the blockade of adrenergic ${\alpha}_1-receptors$. CUMC6335 also causes the relaxation in the isolated aortic strips of the rabbit partly via the blockade of adrenergic ${\alpha}_1-receptors$, in addition to the unknown direct mechanism. It seems that there is no species difference in the vascular effect between the rat and the rabbit.

Flavone Attenuates Vascular Contractions by Inhibiting RhoA/Rho Kinase Pathway

  • Baek, In-Ji;Jeon, Su-Bun;Song, Min-Ji;Yang, Enyue;Sohn, Uy-Dong;Kim, In-Kyeom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.201-207
    • /
    • 2009
  • Our previous study demonstrated that flavone inhibits vascular contractions by decreasing the phosphorylation levelof the myosin phosphatase target subunit (MYPT1). In the present study, we hypothesized that flavone attenuates vascular contractions through the inhibition of the RhoA/Rho kinase pathway. Rat aortic rings were denuded of endothelium, mounted in organ baths, and contracted with either 30 nM U46619 (a thromboxane A2 analogue) or 8.0 mM NaF 30 min after pretreatment with either flavone (100 or 300 $({\mu}M$) or vehicle. We determined the phosphorylation level of the myosin light chain ($MLC_{20}$), the myosin phophatase targeting subunit 1 (MYPT1) and the protein kinase C-potentiated inhibitory protein for heterotrimeric myosin light chain phophatase of 17-kDa (CPI17) by means of Western blot analysis. Flavone inhibited, not only vascular contractions induced by these contractors, but also the levels of $MLC_{20}$ phosphorylation. Furthermore, flavone inhibited the activation of RhoA which had been induced by either U46619 or NaF. Incubation with flavone attenuated U46619 or NaF-induced phosphorylation of $MYPT1^{Thr855}$ and $CPI17^{Thr38}$, the downstream effectors of Rho-kinase. In regards to the $Ca^{2+}$-free solution, flavone inhibited the phosphorylation of $MYPT1^{Thr855}$ and $CPI17^{Thr38}$, as well as vascular contractions induced by U 46619. These results indicate that flavone attenuates vascular contractions, at least in part, through the inhibition of the RhoA/Rho-kinase pathway.

Potentiation of endothelium-dependent vasorelaxation of mesenteric arteries from spontaneously hypertensive rats by gemigliptin, a dipeptidyl peptidase-4 inhibitor class of antidiabetic drug

  • Kim, Hae Jin;Baek, Eun Bok;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.713-719
    • /
    • 2018
  • Dipeptidyl peptidase4 (DPP4) inhibitors such as gemigliptin are antidiabetic drugs elevating plasma concentration of incretins such as GLP-1. In addition to the DPP4 inhibition, gemigliptin might directly improve the functions of vessels under pathological conditions. To test this hypothesis, we investigated whether the acetylcholine-induced endothelium dependent relaxation (ACh-EDR) of mesenteric arteries (MA) are altered by gemigliptin pretreatment in Spontaneous Hypertensive Rats (SHR) and in Wistar-Kyoto rats (WKY) under hyperglycemia-like conditions (HG; 2 hr incubation with 50 mM glucose). ACh-EDR of WKY was reduced by the HG condition, which was significantly recovered by $1{\mu}M$ gemigliptin while not by saxagliptin and sitagliptin up to $10{\mu}M$. The ACh-EDR of SHR MA was also improved by $1{\mu}M$ gemigliptin while similar recovery was observed with higher concentration ($10{\mu}M$) of saxagliptin and sitagliptin. The facilitation of ACh-EDR by gemigliptin in SHR was not observed under pretreatment with NOS inhibitor, L-NAME. In the endothelium-denuded MA of SHR, sodium nitroprusside induced dose-dependent relaxation was not affected by gemigliptin. The ACh-EDR in WKY was decreased by treatment with $30{\mu}M$ pyrogallol, a superoxide generator, which was not prevented by gemigliptin. Exendin-4, a GLP-1 analogue, could not enhance the ACh-EDR in SHR MA. The present results of ex vivo study suggest that gemigliptin enhances the NOS-mediated EDR of the HG-treated MA as well as the MA from SHR via GLP-1 receptor independent mechanism.

Effects of Atrial Natriuretic Peptide on Renal and Hormonal Balances in terms of Aging in Rabbits (연령증가에 따른 Atrial Natriuretic Peptide의 신장과 호르몬 효과)

  • Kim, Jong-Duk;Kim, Suhn-Hee;Kim, Jung-Soo;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.51-66
    • /
    • 1989
  • Mammalian cardiocytes secrete atrial natriuretic peptides (ANPs) into plasma, which cause marked natriuresis, diuresis, vasorelaxation and inhibition of hormone secretions. Aging influences the ability of the kidney both to conserve and to excrete sodium; i.e., in old animals, the excretory capacity of sodium is reduced and the time required to excrete sodium load is prolonged. Therefore, it is possible that animals differing in ages may respond differently to ANP. In the present study, we determined whether the renal, hormonal and vascular effects of ANP may be influenced by aging in conscious rabbits. The plasma renin concentration decreased with aging but plasma ANP concentration was significantly lower only in 24-month-old rabbits. Plasma aldosterone concentration and atrial ANP content did not change by aging. In 1-month-old rabbits, ANP (atriopeptin III, 3 ug/kg) administered intravenously caused hypotension and decreased in plasma renin and aldosterone concentrations, but did not cause diuresis and natriuresis. In 2 to 5 month-old rabbits, ANP caused hypotension, decreases in Plasma renin and aldosterone concentrations and marked renal effects. However, in 24-month-old rabbits, all the above effects of ANP was blunted. With hydration of physiological saline at a rate of 15 ml/kg/h for 2hr, urine volume and glomerular filtration rate did not change but the electrolyte excretion as well as fractional excretion of sodium significantly increased. The plasma concentrations of active renin and aldosterone were decreased but plasma inactive renin and ANP concentrations were increased. The changes in renal function and plasma level of hormone showed no differences in different ages. These results suggest that the peripheral vascular receptors to ANP may develop earlier than those in the kidney, and the attenuated vascular and renal responses to ANP in the old age may be due to age-related modifications in renal function and blood vessel.

  • PDF

Comparison of Green Tea Extract and Epigallocatechin Gallate on Blood Pressure and Contractile Responses of Vascular Smooth Muscle of Rats

  • Lim, Dong-Yoon;Lee, Eun-Sook;Park, Hyeon-Gyoon;Kim, Byeong-Cheol;Hong, Soon-Pyo;Lee, Eun-Bang
    • Archives of Pharmacal Research
    • /
    • v.26 no.3
    • /
    • pp.214-223
    • /
    • 2003
  • The present study was conducted to investigate the effects of green tea extract (GTE) on arterial blood pressure and contractile responses of isolated aortic strips of the normotensive rats and to establish the mechanism of action. The phenylephrine ($10^{-6}~10^{-5}M$)-induced contractile responses were greatly inhibited in the presence of GTE (0.3~1.2 mg/mL) in a dose-dependent fashion. Also, high potassium ($3.5{\times}10^{-2}~5.6{\times}10^{-2}{\;}M$)-induced contractile responses were depressed in the presence of 0.6~1.2 mg/mL of GTE, but not affected in low concentration of GTE (0.3 mg/mL). However, epigallocatechin gallate (EGCG, $4~12{\;}{\mu}g/mL$) did not affect the contractile responses evoked by phenylephrine and high $K^+$. GTE (5~20 mg/kg) given into a femoral vein of the normotensive rat produced a dose-dependent depressor response, which is transient. Interestingly, the infusion of a moderate dose of GTE (10 mg/kg/30 min) made a significant reduction in pressor responses induced by intravenous norepinephrine. However, EGCG (1 mg/kg/30 min) did not affect them. Collectively, these results obtained from the present study demonstrate that intravenous GTE causes a dose-dependent depressor action in the anesthetized rat at least partly through the blockade of adrenergic $\alpha_1$-receptors. GTE also causes the relaxation in the isolated aortic strips of the rat via the blockade of adrenergic $\alpha_1$-receptors, in addition to the unknown direct mechanism. It seems that there is a big difference in the vascular effect between GTE and EGCG.

Mechanism of the relaxant action of Trazodone in isolated rat aorta (흰쥐 대동맥에서 Trazodone의 혈관이완 작용기전)

  • Kim, Shang-jin;Kim, Jeong-gon;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.587-595
    • /
    • 2003
  • The aim of this study was to investigate trazodone's effect on vasorelaxation and blood pressure lowering and to examine its underlying mechanism of action in isolated thoracic aorta and anesthesized rats. Precontracted aortic rings with high KCl were relaxed with trazodone, at concentrations of $50{\mu}M$ or greater. However, precontracted rings with phenylephrine (PE) were relaxed with trazodone, at concentrations of $0.03{\mu}M$ or greater, in a concentration-dependent manner. These relaxant effects of trazodone on endothelium intact rat aortic rings were significantly greater than those on denuded rings. The trazodone-induced relaxations were suppressed by nitric oxide synthase (NOS) inhibitors, N(G)-nitro-L-arginine (L-NNA) and N(omega)-nitro-L-arginine methyl ester (L-NAME), guanylate cyclase inhibitors, methylene blue and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a $Ca^{2+}$-activated $K^+$ channel blocker, tetrabutylammonium (TBA), a $Ca^{2+}$ channel blocker, nifedipine, $Na^+$ channel blockers, lidocaine and procaine, and removal of extracellular $Na^+$, but not by aminoguanidine, 2-nitro-4-carboxyphenyl-n, n-diphenylcarbamate (NCDC), indomethacin, glibenclamide and clotrimazole. In vivo, infusion of trazodone elicited significant decrease in arterial blood pressure. Trazodone-induced decrease in blood pressure was markedly inhibited by pretreatment of intravenous injection of saponin, L-NNA, methylene blue, TBA, lidocaine or nifedipine. These findings suggest that the endothelium-dependent relaxation and decrease in blood pressure induced by trazodone is mediated by release of NO from the endothelium, activation of TBA-sensitive $Ca^{2+}$-activated $K^+$ channels or inhibition of $Ca^{2+}$ entry through voltage-gated channel.

Mechanism of the relaxant action of imipramine in isolated rat aorta (흰쥐 대동맥에서 imipramine의 혈관이완 작용기전)

  • Kang, Hyung-sub;Lee, Sang-woo;Baek, Sung-su;Joe, Sung-gun;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.597-606
    • /
    • 2003
  • Although the antidepressant effects of imipramine (IMI) have been well known in several studies, the effects on cardiovascular system, particularly the vasorelaxant effects, have not known clearly. We hypothesis that IMI-induced vasorelaxation involves NO (nitrie oxide), activation of guanylate cyclase (GC) and $Ca^{2+}$ channel. The possible roles of the endothelium and $Ca^{2+}$ in IMI-induced responses were investigated using isolated rings of rat thoracic aorta and anesthesized rats. In KCl-precontracted rings. IMI produces endothelium-dependent and endothelium-independent relaxations in intact (+E) as well as endothelium-denuded (-E) rat aorta in a concentration-dependent manner. In phenylephrine (PE)-precontracted rings, the IMI-induced relaxation was significantly greater in +E rings. The IMI-induced relaxations were suppressed by nitric oxide synthase (NOS) inhibitors, N(G)-nitro-L-arginine (L-NNA), N(omega)-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine, a non-selective GC inhibitor, methylene blue, $Na^+$ channel blockers, lidocaine and procaine, or $Ca^{2+}$ channel blockers, nifedipine and verapamil, in PE-precontracted +E rings, but not in PE-precontracted -E rings. These relaxations were also suppressed by lidocaine or procaine in -E aortic rings. However, IMI-induced relaxations were not inhibited by a PLC inhibitor 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC), an inositol monophosphatase inhibitor, lithium, indomethacin and dexamethasone in +E and -E rings. In vivo, infusion of IMI elicited significant decrease in arterial blood pressure. After intravenous injection of saponin, NOS inhibitors. MB and nifedipine, infusion of IMI inhibited the IMI-lowered blood pressure markedly. These findings suggest that the endothelium-dependent relaxation induced by IMI is mediated by activation of NO/cGMP signaling cascade or inhibition of $Ca^{2+}$ entry through voltage-gated channel, and this mechanism may contribute to the hypotensive effects of IMI in rats.