Role of Endogenous Nitric Oxide in the Control of Salivary Secretion and Blood Flow

타액분비 및 선혈류 조절에 대한 내인성 산화질소의 역할

  • Nam, Sang-Chae (Department of Physiology, Chonnam National Medical School) ;
  • Kim, Mi-Won (Department of Physiology, Chonnam National Medical School) ;
  • Kim, Won-Jae (Department of Oral Physiology & Institute of Dental Research, Chonnam National University Dental School)
  • 남상채 (전남대학교 의과대학 생리학교실) ;
  • 김미원 (전남대학교 의과대학 생리학교실) ;
  • 김원재 (전남대학교 치과대학 구강생리학교실 및 치의학연구소)
  • Published : 1997.12.21

Abstract

The present study was designed to investigate whether endogenous nitric oxide(EDNO) is involved in submandibular vasodilation and salivation induced by parasympathetic nerve stimulation. Effects of $N^w$-nitro-L-arginine-methyl ester (L-NAME) which blocks the synthesis of EDNO from L-arginine on the submandibular vasodilation and salivation induced by chords stimulation or administration of various vasodilators were examined in anesthetized cats. Effect of L-NAME on $K^+$ efflux induced by carbachol was also examined using the excised submandibular slice in vitro. In the submandibular slices, acetylcholine$(10^{-5}\;mol/L)$ or vasoactive intestinal polypeptide$(VIP,\;10^{-5}\;mol/L)$ increased $NO_2$ contents, which was Prevented by pretreatment with L-NAME. Salivary secretion in response to the chords stimulation$(3\;V,\;1\;msec,\;10{\sim}20\;Hz)$ was completely blocked by treatment with atropine(1 mg/kg). Increased blood flow response to the low frequency(1, 2, 5 Hz) stimulation was significantly reduced, whereas the blood flow induced by the higher frequency(10,20 Hz) stimulation was not affected. Lingual-arterial infusion of L-NAME(100 mg/kg) significantly diminished the vasodilatory and salivary responses to the chorda stimulation at all stimuli frequencies used. Intra-arterial infusion of L-NAME(100 mg/kg markedly diminished the vasodilatory responses to acetylcholine$(5\;{\mu}g/kg)$, VIP$(5\;{\mu}g/kg)$ or bradykinin$(5\;{\mu}g/kg)$. In the excised submandibular slice, $K^+$ efflux in response to carbachol$(10^{-5}\;mol/L)$ was significantly decrease by pretreatment with L-NAME$(10^{-5}\;mol/L)$. In the isolated submandibular artery precontracted with phenylephrine$(10^{-5}\;mol/L)$, the vasorelaxation induced by ACh$(10^{-7}\;mol/L)$ was reversed into a contraction by methylene blue$(10^{-4}\;mol/L)$. These results suggest that EDNO may play an important role in vasodilation and secretion of the submandibular gland.

Keywords