• 제목/요약/키워드: vasorelaxation

검색결과 127건 처리시간 0.029초

흰쥐에서 혈관내피 의존적인 혈관이완과 혈압하강에 대한 propofol의 억제 효과 (Inhibitory effect of propofol on endothelium-dependent relaxation and blood pressure lowering in rats)

  • 김상진;김정곤;조성건;강형섭;김진상
    • 대한수의학회지
    • /
    • 제44권3호
    • /
    • pp.357-366
    • /
    • 2004
  • We studied the effect of propofol (PPF) on the endothelium-dependent vascular responses in isolated rat thoracic aorta. In aortic rings with endothelium, PPF inhibited the phenylephrine (PE)-induced contraction in a concentration-dependent manner. In PE-precontracted preparations, PPF attenuated the endothelium-dependent relaxation by acetylcholine but not by A23187. And PPF did not attenuate the endothelium-independent relaxation by sodium nitroprusside (SNP). The relaxation induced by acetylcholine in PE-precontracted aortic rings was significantly augmented by zaprinast, a cGMP-specific phosphodiesterase inhibitor, and this augmentation was inhibited by PPF. Although SNP-induced relaxation was significantly augmented by zaprinast, this augmentation was not inhibited by PPF. In preparations preconstricted with PE, the PPF-induced relaxation was inhibited by atropine. In addition, PPF attenuated the vasorelaxation by phosphodiesterase inhibitors (IBMX, Ro20-1724 or zaprinast except milrinone). In vivo, the infusion of acetylcholine and SNP showed decreased arterial blood pressure in rats. The pre-injection of PPF inhibited the acetylcholine-induced blood pressure lowering, but not the SNP-induced blood pressure lowering. These results suggest that PPF can attenuate in part the acetylcholine-induced vasorelaxation and blood pressure lowering through the inhibition of the acetylcholine receptor-mediated endothelium-derived relaxing factor by acting on endothelium. It is considered that the inhibitory effect of PPF on the vasorelaxation is due to the decreased level of cGMP which can be attributed to the inhibition of the muscarinic receptor and/or receptor-G-protein interaction.

Oxytocin-induced endothelial nitric oxide dependent vasorelaxation and ERK1/2-mediated vasoconstriction in the rat aorta

  • Xu, Qian;Zhuo, Kunping;Zhang, Xiaotian;Zhang, Yaoxia;Xue, Jiaojiao;Zhou, Ming-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권4호
    • /
    • pp.255-262
    • /
    • 2022
  • Oxytocin is a neuropeptide produced primarily in the hypothalamus and plays an important role in the regulation of mammalian birth and lactation. It has been shown that oxytocin has important cardiovascular protective effects. Here we investigated the effects of oxytocin on vascular reactivity and underlying the mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and in rat aorta ex vivo. Oxytocin increased phospho-eNOS (Ser 1177) and phospho-Akt (Ser 473) expression in HUVECs in vitro and the aorta of rat ex vivo. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited oxytocin-induced Akt and eNOS phosphorylation. In the rat aortic rings, oxytocin induced a biphasic vascular reactivity: oxytocin at low dose (10-9-10-8 M) initiated a vasorelaxation followed by a vasoconstriction at high dose (10-7 M). L-NAME (a nitric oxide synthase inhibitor), endothelium removal or wortmannin abolished oxytocin-induced vasorelaxation, and slightly enhanced oxytocin-induced vasoconstriction. Atosiban, an oxytocin/vasopressin 1a receptor inhibitor, totally blocked oxytocin-induced relaxation and vasoconstriction. PD98059 (ERK1/2 inhibitor) partially inhibited oxytocin-induced vasoconstriction. Oxytocin also increased aortic phospho-ERK1/2 expression, which was reduced by either atosiban or PD98059, suggesting that oxytocin-induced vasoconstriction was partially mediated by oxytocin/V1aR activation of ERK1/2. The present study demonstrates that oxytocin can activate different signaling pathways to cause vasorelaxation or vasoconstriction. Oxytocin stimulation of PI3K/eNOS-derived nitric oxide may participate in maintenance of cardiovascular homeostasis, and different vascular reactivities to low or high dose of oxytocin suggest that oxytocin may have different regulatory effects on vascular tone under physiological or pathophysiological conditions.

Relaxant Effect of 4-Aminopyridine on the Mesenteric Artery of Rat

  • Kim, Se-Hoon;Lee, Tae-Im
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권6호
    • /
    • pp.463-469
    • /
    • 2000
  • It has been well known that 4-aminopyridine (4-AP) has an excitatory effect on vascular smooth muscle due to causing membrane depolarization by blocking $K^+-channel$. However, we observed that 4-AP had an inhibitory effect on the mesenteric artery of rat. Therefore, we investigated the mechanism of 4-AP-induced vasorelaxation. The mesenteric arcuate artery and its branches were isolated and cut into ring. The ring segment was immersed in HEPES-buffered solution and its isometric tension was measured. 4-AP $(0.1{\sim}10\;mM)$ induced a concentration-dependent relaxation, which was unaffected by NO synthase inhibitor, $N^G-nitro-L-arginine$ methylester $(100\;{\mu}M)$ or soluble guanylate cyclase inhibitor, methylene blue $(100\;{\mu}M).$ Glibenclamide $(100\;{\mu}M)$, ATP-sensitive $K^+$ channel blocker, did not exert any effect on the 4-AP-induced vasorelaxation. 4-AP relaxed the sustained contraction induced by 100 mM $K^+$ or $Ca^{2+}$ ionophore, A23187 $(100\;{\mu}M)$ in a dose-dependent manner. In addition, 4-AP significantly decreased the phasic contractile response to norepinephrine in the absence of extracellular $Ca^{2+}$. However, 4-AP did not block the $^{45}Ca$ influx of rat aorta. From the above results, we suggest that 4-AP may not block the $Ca^{2+}$ influx through $Ca^{2+}-channel,$ but act as a nonspecific vasorelaxant in arterial smooth muscle.

  • PDF

L-Arginine의 산화질소생성과 무관한 혈관이완효과 (Nitric Oxide/cGMP-Independent Vasorelaxation Enhanced by L-Arginine)

  • 문승호;이종은;유광재;오봉석;이동준
    • Journal of Chest Surgery
    • /
    • 제31권2호
    • /
    • pp.102-107
    • /
    • 1998
  • L-Arginine이 산화질소 생성의 전구물질로서 공헌하는 것 이외에 다른 기전에 의하여도 혈관이완을 일으키는가 구명하기 위하여 적출 흰쥐 흉부대동맥 표본에서 L-arginine에 의한 장력, 조직 산화질소 및 cGMP 함량 변동 등을 조사하여 다음과 같은 결과를 얻었다. 1. Phenylephrine(3.5$\times$10-6 mol/L) 수축 대동맥 표본은 L-arginine(10-9~10-3 mol/L)에 의해 용량의존 이완되었다. NG-Nitro-L-arginine methyl ester(L-NAME, 10-5 mol/L) 전처치에 의해 저농도 L-arginine(10-9~10-6 mol/L)에 혈관이완 효과는 소실되었으나 고농도 L-arginine(10-4~10-3 mol/L)의 이완효과는 도리어 증강되었다. 내피층 파괴 혈관 표본은 L-arginine에 대해 이완반응을 보이지 않았다. 2. L-NAME(10-5 mol/L) 존재하에 일어나는 L-arginine 이완효과는 indomethacin 전처치에 의해 영향받지 않으나, ouabain 전처치에 의해 유의하게 감약되었다. 또한 L-arginine 이완효과는 methylene blue에 의해 부분적으로 길항되었다. KCl(3.5$\times$10-2 mol/L) 수축 대동맥 표본은 L-arginine(10-9~10-3 mol/L)에 의해 L-NAME (10-5 mol/L) 처치와 무관하게 이완반응을 보이지 않았다. 3. L-NAME는 혈관조직 산화질소 함량을 감소시키며 이 감소효과는 L-arginine(10-4 mol/L)에 의해 영향받지 않았다. 또한 L-NAME는 혈관조직 cGMP 함량을 감소시키나 이 감소효과는 L-arginine에 의해 영향받지 않았다. 이상의 실험성적은 L-arginine이 내피세포의 산화질소 및 cGMP 생성과 무관한 기전을 통해서도 내피의존 혈관이완효과를 나타냄을 시사하였다.

  • PDF

Mechanism of Acetylcholine-induced Endothelium-dependent Relaxation in the Rabbit Carotid Artery by M3-receptor Activation

  • Song, Yong-Jin;Kwon, Seong-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권6호
    • /
    • pp.313-317
    • /
    • 2004
  • The present study were designed to characterize the action mechanisms of acetylcholine (ACh)-induced endothelium-dependent relaxation in arteries precontracted with high $K^+$(70 mM). For this, we simultaneously measured both muscle tension and cytosolic free $Ca^{2+}$ concentration $([Ca^{2+}]_i)$, using fura-2, in endothelium-intact, rabbit carotid arterial strips. In the artery with endothelium, high $K^+$ increased both $[Ca^{2+}]_i$ and muscle tension whereas ACh $(10{\mu}M)$ significantly relaxed the muscle and increased $[Ca^{2+}]_i$. In the presence of $N^G$-nitro-L-arginine (L-NAME, 0.1 mM), ACh increased $[Ca^{2+}]_i$ without relaxing the muscle. In the artery without endothelium, high $K^+$ increased both $[Ca^{2+}]_i$ and muscle tension although ACh was ineffective. 4-DAMP (10 nM) or atropine $(0.1{\mu}M)$ abolished ACh-induced increase in $[Ca^{2+}]_i$ and relaxation. The increase of $[Ca^{2+}]_i$ and vasorelaxation by ACh was siginificantly reduced by either $3{\mu}M$ gadolinium, $10{\mu}M$ lanthanum, or by $10{\mu}M$ SKF 96365. These results suggest that in rabbit carotid artery, ACh-evoked relaxation of 70 mM $K^+$-induced contractions appears to be mediated by the release of NO. ACh-evoked vasorelaxation is mediated via the $M_3$ subtype, and activation of the $M_3$ subtype is suggested to stimulate nonselective cation channels, leading to increase of $[Ca^{2+}]_i$ in endothelial cells.

흰쥐에서 Ketamine에 의한 혈압하강 (Ketamine-Induced Blood Pressure Lowering in the Rat)

  • 유선봉;김상진;이문영;강형섭;김진상
    • 한국임상수의학회지
    • /
    • 제22권3호
    • /
    • pp.220-227
    • /
    • 2005
  • Although ketamine has been used in the field of anesthetic medicine for its safety and favourable respiratory effects, the cardiovascular effects of ketamine is still controversial. To clarify the action and mechanism of ketamine upon cardiovascular system, arterial blood pressure, tension of aortic ring, left ventricular developed pressure and heart rate were measured in rats, Ketamine produced two types of effects on arterial blood pressure in anesthetized rats; monophasic effect (blood pressure lowering) and biphasic effect (initial transient blood pressure increasing following sustained lowering), The ketamine-induced lowering of aterial blood pressure showed a concentration-dependent manner, inhibited by the pretreament of $MgCl_2$ and potentiated by the pretreatment of $CaCl_2$. The ketamine-induced lowering of aterial blood pressure was suppressed by the pretreatment of nifedipine, verapamil or lidocaine. In phenylephrine-precontracted endothelium intact (+E) aortic rings, ketamine sometimes caused a small enhancement of contraction ($112.5{\pm}3.6{\%}$). However, in many experiments, ketamine produced a concentration-dependent relaxation in +E aortic rings precontracted with either phenylephrine or KCl. Ketamine-induced relaxation was significantly greater in KCl-precontracted strips than phenylephrine-precontracted strips. In phenylephrine-precontracted +E aortic rings, the ketamine-induced vasorelaxation was not suppressed by endothelium removal or by the pretreatment of a nitric oxide synthase inhibitors, L-$N^G$-nitro-arginine and a guanylate cyclase inhibitors, methylene blue, suggesting that the ketamine-induced vasorelaxation is not dependent on the endothelial function. In addition, ketamine elicited an increase in left ventricular developed pressure in perfused hearts accompanied by decrease in heart rate. These results suggest that ketamine could evoke a hypotension due to vasorelaxation and decrease in heart rate in rats. The inhibitory effect of cardiovascular system might be associated with modulation of $Ca^{2+}$ homeostasis.

소복축어탕(小腹逐瘀湯)이 흰쥐 흉부대동맥의 혈관운동성에 미치는 영향 (Effects of Water Extract of Sobokchuko-tang on Rat Blood Vessels)

  • 정용식;권정남;민성순;김종득;이상희;김재규;허정은;김영균
    • 대한한방내과학회지
    • /
    • 제27권3호
    • /
    • pp.629-638
    • /
    • 2006
  • This study was carried out to examine the relaxational response to the water extract of Sobokchuko-tang (SCT) in rat thoracic aorta. Segments of thoracic aorta obtained from rats immediately after delivery were mounted in organ baths superfused on a polygraph. It was found that the thoracic aorta segments responded to the SCT with dose-dependent vasorelaxation. At $10^{-7}M$ phenylephrine-induced contraction, the contractile response of thoracic aortic rings were inhibited by 99.2%. 75.3%. 42.4% and 35.8% after addition of the respective concentration (1O. 30. 100. $300{\mu}g$/ml) of SCT. This vasorelaxation of rat thoracic aorta was endothelium-dependent. The action mechanisms of vasorelaxation are thought to be concerned with the role of NO. cAMP and cyclooxygenase. but not with cGMP.

  • PDF

당고특대황(唐古特大黃)의 주증(酒蒸) 여부가 혈관이완 기전에 미치는 영향 (Differential Mechanisms of Vascular Relaxation between Alcohol Steamed Rhei Tangutici Radix et Rhizoma and Rhei Tangutici Radix et Rhizoma)

  • 양재경;신흥묵
    • 대한본초학회지
    • /
    • 제25권4호
    • /
    • pp.17-21
    • /
    • 2010
  • Objectives : The aim of this study was to evaluate the differential mechnism of vasodilation of alcohol steamed Rhei Tangutici Radix et Rhizoma. (ART) and Rhei Tangutici Radix et Rhizoma. (RT) in rat thoracic aorta. Methods : Rat aortic ring preparations were mounted in organ baths with oxygenated (95% $O_2$-5% $CO_2$) Krebs-Ringer bicarbonate solutions at $37{\pm}0.5^{\circ}C$ and subjected to contractions or relaxations. Results : ART exerted vasorelaxation on phenylephrine(PE)-induced contraction in a dose dependent manner. Vasorelaxation effects of ART and RT were endothelium-independent. In the $Ca^{2+}$-free high KCl (60 mM) baths, the contraction of aortic rings induced by accumulative addition of $Ca^{2+}$ (0.3-10.0 mM) was significantly reduced by pre-treatment with both ART and RT for 10 min. The magnitude of vasodilatation was biggerin ART. Moreover, verapamil ($0.001{\mu}M$) and diltiazem ($10{\mu}M$), voltage operative $Ca^{2+}$channel blockers, attenuated the relaxation effect of ART but not that of RT. In the absence of extracellular $Ca^{2+}$, pre-incubation of the aortic rings with RT ($1.0mg/m{\ell}$) significantly reduced the contraction caused by PE but not that of ART. $K^+$ channel inhibitors such as glibenclamide (Gli, $10^{-5}M$), tetraethylammonium (TEA, 1 mM) and 4-aminopyridine (4-AP, 0.2 mM) significantly reduced the ART's vasorelaxation efficacy, but not that of RT. However, the relaxation effects of ART and RT were not inhibited by pre-treatment with indomethacin ($10^{-5}M$), and atropine ($10^{-6}M$). Conclusions : These results suggest that the endothelium-independent relaxation is due to inhibition of $Ca^{2+}$ influx via the suppression of $Ca^{2+}$ release from intracelluar store in RT but via both voltage operative $Ca^{2+}$channel blockage and $K^+$ channel activation in ART.