• Title/Summary/Keyword: vascular tissue engineering

Search Result 65, Processing Time 0.03 seconds

Influence of hydrogel encapsulation during cryopreservation of ovarian tissues and impact of post-thawing in vitro culture systems in a research animal model

  • Thuwanut, Paweena;Comizzoli, Pierre;Pimpin, Alongkorn;Srituravanich, Weerayut;Sereepapong, Wisan;Pruksananonda, Kamthorn;Taweepolcharoen, Charoen;Tuntiviriyapun, Punkavee;Suebthawinkul, Chanakarn;Sirayapiwat, Porntip
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.111-123
    • /
    • 2021
  • Objective: Using domestic cats as a biomedical research model for fertility preservation, the present study aimed to characterize the influences of ovarian tissue encapsulation in biodegradable hydrogel matrix (fibrinogen/thrombin) on resilience to cryopreservation, and static versus non-static culture systems following ovarian tissue encapsulation and cryopreservation on follicle quality. Methods: In experiment I, ovarian tissues (n=21 animals; 567 ovarian fragments) were assigned to controls or hydrogel encapsulation with 5 or 10 mg/mL fibrinogen (5 or 10 FG). Following cryopreservation (slow freezing or vitrification), follicle viability, morphology, density, and key protein phosphorylation were assessed. In experiment II (based on the findings from experiment I), ovarian tissues (n=10 animals; 270 ovarian fragments) were encapsulated with 10 FG, cryopreserved, and in vitro cultured under static or non-static systems for 7 days followed by similar follicle quality assessments. Results: In experiment I, the combination of 10 FG encapsulation/slow freezing led to greater post-thawed follicle quality than in the control group, as shown by follicle viability (66.9%±2.2% vs. 61.5%±3.1%), normal follicle morphology (62.2% ±2.1% vs. 55.2%±3.5%), and the relative band intensity of vascular endothelial growth factor protein phosphorylation (0.58±0.06 vs. 0.42±0.09). Experiment II demonstrated that hydrogel encapsulation promoted follicle survival and maintenance of follicle development regardless of the culture system when compared to fresh controls. Conclusion: These results provide a better understanding of the role of hydrogel encapsulation and culture systems in ovarian tissue cryopreservation and follicle quality outcomes using an animal model, paving the way for optimized approaches to human fertility preservation.

Simultaneous Unwrapping Phase and Error Recovery from Inhomogeneity (SUPER) for Quantitative Susceptibility Mapping of the Human Brain

  • Yang, Young-Joong;Yoon, Jong-Hyun;Baek, Hyun-Man;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.37-49
    • /
    • 2018
  • Purpose: The effect of global inhomogeneity on quantitative susceptibility mapping (QSM) was investigated. A technique referred to as Simultaneous Unwrapping Phase with Error Recovery from inhomogeneity (SUPER) is suggested as a preprocessing to QSM to remove global field inhomogeneity-induced phase by polynomial fitting. Materials and Methods: The effect of global inhomogeneity on QSM was investigated by numerical simulations. Three types of global inhomogeneity were added to the tissue susceptibility phase, and the root mean square error (RMSE) in the susceptibility map was evaluated. In-vivo QSM imaging with volunteers was carried out for 3.0T and 7.0T MRI systems to demonstrate the efficacy of the proposed method. Results: The SUPER technique removed harmonic and non-harmonic global phases. Previously only the harmonic phase was removed by the background phase removal method. The global phase contained a non-harmonic phase due to various experimental and physiological causes, which degraded a susceptibility map. The RMSE in the susceptibility map increased under the influence of global inhomogeneity; while the error was consistent, irrespective of the global inhomogeneity, if the inhomogeneity was corrected by the SUPER technique. In-vivo QSM imaging with volunteers at 3.0T and 7.0T MRI systems showed better definition in small vascular structures and reduced fluctuation and non-uniformity in the frontal lobes, where field inhomogeneity was more severe. Conclusion: Correcting global inhomogeneity using the SUPER technique is an effective way to obtain an accurate susceptibility map on QSM method. Since the susceptibility variations are small quantities in the brain tissue, correction of the inhomogeneity is an essential element for obtaining an accurate QSM.

Effects of enamel matrix derivatives on the proliferation and the release of growth factors of human periodontal ligament cells (법랑기질유도체가 인간 치주인대세포의 증식 및 성장인자 발현에 미치는 영향)

  • Jung, Gyu-Un;Pang, Eun-Kyoung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.203-209
    • /
    • 2016
  • Purpose: Stimulating the proliferation and migration of periodontal ligament cells (PDLCs) has become the main goal of periodontal regeneration. To accomplish this goal, regeneration procedures have been developed, but results have not been predictable. Recently, tissue engineering using enamel matrix derivatives (EMDs) and growth factors has been applied to periodontal regeneration; however, the mechanism of EMDs is largely unknown. The aim of this study was to investigate the effects of EMDs on the proliferation and release of growth factors from PDLCs. Materials and methods: Human PDLCs were removed from individually extracted 3rd molars of healthy young adults, and cultured in the media containing EMDs (Emdogain, Biora, Malmo, Sweden) at concentration of 0, 12.5, 25, 50, 100, and $200{\mu}g/mL$ each. Cell proliferation and ALP (alkaline phosphatase) activity were measured. The evaluation of growth factors released by PDLCs was also performed by one-way analysis of variance (ANOVA) and Bonferroni's multiple comparison test. Results: Significantly increased proliferation and ALP activity were observed in PDLCs treated with over $25{\mu}g/mL$ and $50{\mu}g/mL$ EMDs, respectively. Additionally, treatment of PDLCs with $50{\mu}g/mL$ resulted in significantly increased release of vascular endothelial growth factor (VEGF) and transforming growth factor $(TGF)-{\beta}$ after 24 h and 48 h, respectively. Conclusion: EMDs enhance the proliferation and ALP activity of PDLCs, and promote the release of growth factors, including VEGF and $TGF-{\beta}$, from PDLCs. Therefore EMDs could be one of the effective methods for periodontal regeneration.

Hot Water Extract of Scutellaria baicalensis Inhibits Migration, Invasion and Tube Formation in a Human Umbilical Vein Endothelial Cell Model and a Rat Aortic Ring Sprouting Model (혈관내피세포와 흰쥐 대동맥 미세혈관 발아 모델을 이용한 황금 열수추출물의 세포의 이동, 침투 및 관형성 억제 연구)

  • Kim, Eok-Cheon;Bae, Kiho;Kim, Han Sung;Yoo, Yeong-Min;Gelinsky, Michael;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.91-100
    • /
    • 2016
  • Angiogenesis is essential for the pathophysiological processes of embryogenesis, tissue growth, diabetic retinopathy, psoriasis, wound healing, rheumatoid arthritis, cardiovascular diseases, and tumor growth. Inhibition of angiogenesis represents an attractive therapeutic approach for the treatment of angiogenic diseases such as cancer. However, uncontrolled angiogenesis is also necessary for tumor development and metastasis. Inhibition of vascular endothelial growth factor (VEGF) signaling, a critical factor in the induction of angiogenesis, cause robust and rapid changes in blood vessels of tumors and therefore VEGF constitutes a target for such anti-angiogenic therapy. Recently, since natural compounds pose significantly less risk of deleterious side effects than synthetic compounds, a great many natural resources have been assessed for useful substance for anti-angiogenic treatment. Here we evaluated the anti-angiogenic effects of a hot water extract of Scutellaria baicalensis (SBHWE) using in vitro assays and ex vivo animal experiments. Our results show that SBHWE dose-dependently abrogated vascular endothelial responses by inhibiting VEGF-stimulated migration and invasion as well as tube formation in a human umbilical vein endothelial cell (HUVEC) model, without cytotoxicity, as determined by a cell viability assay. Further study revealed that SBHWE prevented VEGF-induced neo-vascularization in a rat aortic ring sprouting model. Taken together, our findings reveal an anti-angiogenic activity of Scutellaria baicalensis and suggest that SBHWE is a novel candidate inhibitor of VEGF-induced angiogenesis.

Difference of Gene Expression in Venous Malformation (정맥기형 환자에 있어서의 유전자 발현 차이)

  • Kim, Taek Kyun;Oh, Eun Jung;Cho, Byung Chae;Chung, Ho Yun
    • Archives of Plastic Surgery
    • /
    • v.34 no.6
    • /
    • pp.671-678
    • /
    • 2007
  • Purpose: Venous malformation(VM) which often causes pain and discomfort is the most common type of vascular malformations. Although it is presented with disfigured appearance and associated soft tissue or skeletal hypertrophy, the molecular bases of VMs are poorly understood. Differentially expressed genes(DEGs) of VMs were investigated to illuminate the molecular mechanism of the disease entity. Methods: Gene expressions of VM patients' subcutaneous tissue were studied in comparison with normal persons' by $GeneFishing^{TM}$ technique using the annealing control primers (ACPs) to identify DEGs. Candidate genes were sequenced and screened by basic local alignment search tool (BLAST) afterwards. Results: Among seventy DEGs identified, forty DEGs which had shown significantly different expression pattern were sequenced. Twenty eight out of 40 were up-regulated while 12 were down-regulated. BLAST searches revealed that 37 were known genes and 3 were unknown genes. Many genes were involved in the differentiation and remodeling of smooth muscle cells, opposed to the previous hypothesis that a lot of angiogenetic genes would be involved. Furthermore, several transcription factors and related genes, as well as cell signaling and metabolism regulators, were up regulated. Conclusion: It suggests that analysis of DEGs in VMs provide basic knowledge about its pathophysiology. and new therapeutic approaches.

Development of Dual Beam High Speed Doppler OFDI

  • Kim, SunHee;Park, TaeJin;Oh, Wang-Yuhl
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.283-288
    • /
    • 2013
  • This paper describes development of a high speed Doppler OFDI system for non-invasive vascular imaging. Doppler OFDI (optical frequency domain imaging) is one of the phase-resolved second generation OCT (optical coherence tomography) techniques for high resolution imaging of moving elements in biological tissues. To achieve a phase-resolved imaging, two temporally separated measurements are required. In a conventional Doppler OCT, a pair of massively oversampled successive A-lines is used to minimize de-correlation noise at the expense of significant imaging speed reduction. To minimize a de-correlation noise between targeted two measurements without suffering from significant imaging speed reduction, several methods have been developed such as an optimized scanning pattern and polarization multiplexed dual beam scanning. This research represent novel imaging technique using frequency multiplexed dual beam illumination to measure exactly same position with aimed time interval. Developed system has been verified using a tissue phantom and mouse vessel imaging.

Development of 3D Mapping Algorithm with Non Linear Curve Fitting Method in Dynamic Contrast Enhanced MRI

  • Yoon Seong-Ik;Jahng Geon-Ho;Khang Hyun-Soo;Kim Young-Joo;Choe Bo-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2005
  • Purpose: To develop an advanced non-linear curve fitting (NLCF) algorithm for dynamic susceptibility contrast study of brain. Materials and Methods: The first pass effects give rise to spuriously high estimates of $K^{trans}$ in voxels with large vascular components. An explicit threshold value has been used to reject voxels. Results: By using this non-linear curve fitting algorithm, the blood perfusion and the volume estimation were accurately evaluated in T2*-weighted dynamic contrast enhanced (DCE)-MR images. From the recalculated each parameters, perfusion weighted image were outlined by using modified non-linear curve fitting algorithm. This results were improved estimation of T2*-weighted dynamic series. Conclusion: The present study demonstrated an improvement of an estimation of kinetic parameters from dynamic contrast-enhanced (DCE) T2*-weighted magnetic resonance imaging data, using contrast agents. The advanced kinetic models include the relation of volume transfer constant $K^{trans}\;(min^{-1})$ and the volume of extravascular extracellular space (EES) per unit volume of tissue $\nu_e$.

  • PDF

Development of U-shaped Arterialvenous Shunt Using Porous Polyurethane (다공성 폴리우레탄을 이용한 동정맥 누관의 개발)

  • 정재승;김희찬;박광석;최진욱;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.221-230
    • /
    • 1999
  • A new technique for the preparation of porous polyurethane vascular prostheses was investigated. Synthetic vascular grafts with porous wall have been widely proposed, claiming that strength, suture retention, kink resistance, and other handling properties are improved over those with nonporous solid wall. Related to these facts, the control of pores and compliance match have been very important and interesting issues. Two kinds of polymer sheets were compared. One was the porous PU-sheet made at room temerature by the solvent/non-solvent exchange. And the other was the porous PU-sheet fabricated by thermal phase transition and solvent/non-solvent exchange in the thermal controlled bath. According to the result of the above experiments, polyurethane solution was injected into a mold designed for U-type graft. After freezing at low temperature, solvent was dissolved out with alcohol at < $0^{\circ}C$ and water at room temperature to form porous vessels. The average pore size and pore occupation were easily changed by changing polyurethane concentration and freezing rate. This technique can give a proper pore size for tissue ingrowth, and suitable compliances for matching with arteries and veins. In addition, the fabrication of more complicated shaped vessels such as the U-type vascular grafts is easily controlled by using a mold. This method might give a desired compliact graft for artificial implantaion with the commercially available medical polymers.

  • PDF

Two Cases of Auricular Salvage after Wide Excision of Malignant Tumor at Periauricular Area (이개 주변 악성종양의 광범위절제술 후 이개의 보존 2례)

  • Kim, Kyul-Hee;Chung, Chul-Hoon;Chang, Yong-Joon;Lee, Jong-Wook;Rho, Young-Soo;Kim, Chang-Woo
    • Korean Journal of Head & Neck Oncology
    • /
    • v.25 no.1
    • /
    • pp.39-42
    • /
    • 2009
  • Wide excision for curative treatment of malignant tumor on periauricular area often leads to loss of the external ear. But the auricle has rich vascular supply, Conservation of auricular contour is possible through salvage and engineering of remained auricular tissue. We experienced two cases of auricular salvage after wide excision of malignant tumor. In the first case, we performed two-staged technique. In first step, we covered soft tissue defect on periauricualr area with the anterolateral thigh free flap and remained auricle was floating over the flap after split-thickness skin graft was applied on it's posterior raw surface because it's survival was not confirmed. Second step was reposition of remained auricule on the anterolateral thigh flap. In the second case, we packed in periauricular dead space and external auditory canal with temoporalis muscle and temporoparietal fascial flap and then covered the flap with split thickness skin graft. In these two cases, there were no recurrence of tumors and we obtained cosmetically & functionally satisfactory results.

Effect of Low-Energy Laser Irradiation on the Proliferation and Gene Expression of Myoblast Cells (저출력 레이져 자극이 근육세포의 증식 및 유전자 발현에 미치는 효과)

  • Kwag, J.H.;Jeon, O.H.;Kang, D.Y.;Ryu, H.H.;Kim, K.H.;Jung, B.J.;Kim, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • Laser irradiation is known to affect various tissues such as skin, bone, nerve, and skeletal muscle. Laser irradiation promotes ATP synthesis, facilitates wound healing, and stimulates cell proliferation and angiogenesis. In skeletal muscle, laser irradiation is related to the proliferation of skeletal muscle satellite cells. Normal skeletal muscle contains remodeling capacity from myogenic cells that are derived from mononuclear satellite cells. Their processes are activated by the expression of genes related with myogenesis such as muscle-specific transcription factors (MyoD and Myf5) and VEGF (vascular endothelial growth factor). In this study, we hypothesized that laser irradiation would enhance and regulate muscle cell proliferation and regeneration through modulation of the gene expressions related with the differentiation of skeletal muscle satellite cells. $C_2C_{12}$ myoblastic cells were exposed to continuous/non-continuous laser irradiation (660nm/808nm) for 10 minutes daily for either 1 day or 5 days. After laser irradiation, cell proliferation and gene expression (MyoD, Myf5, VEGF) were quantified. Continuous 660nm laser irradiation significantly increased cell proliferation and gene expression compared to control, continuous 808nm laser irradiation, and non-continuous 660nm laser irradiation groups. These results indicate that continuous 660nm laser irradiation can be applied to the treatment and regeneration of skeletal muscle tissue.