• Title/Summary/Keyword: vascular sensitivity

Search Result 82, Processing Time 0.027 seconds

Comparison between Computer Tomography and Magnetic Resonance Imaging in the Diagnosis of Small Hepatocellular Carcinoma

  • Lertpipopmetha, Korn;Tubtawee, Teeravut;Piratvisuth, Teerha;Chamroonkul, Naichaya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4805-4811
    • /
    • 2016
  • Background: Hepatocellular carcinomas (HCCs) less than 2 cm in diameter generally demonstrate a good outcome after curative therapy. However, the diagnosis of small HCC can be problematic and requires one or more dynamic imaging modalities. This study aimed to compare the sensitivity and agreement between CT and MRI for the diagnosis of small HCCs. Methods: CT and/or MRI scans of HCCs (1-2 cm) diagnosed by histopathology or typical vascular pattern according to the 2005 AASLD criteria were blindly reviewed by an abdominal radiologist. The reports were defined as conclusive/typical when arterial enhancement and washout during the portal/delayed phases were observed and as inconclusive when typical vascular patterns were not observed. The sensitivity and Cohen's kappa (k) for agreement were calculated. Results: In 27 patients, 27 HCC nodules (1-2 cm) were included. Diagnosis with a single-imaging modality (CT or MRI) was 81 % versus 48 % (p = 0.01). The CT sensitivity was significantly higher than MRI (78 % versus 52 %, p = 0.04). Among 27 nodules that underwent both CT and MRI, a discordance in typical enhancement patterns was found (k = 0.319, p = 0.05). In cases with inconclusive CT results, MRI gave only an additional 3.7 % sensitivity to reach a diagnosis. In contrast, further CT imaging following inconclusive MRI results gave an additional 29.6 % sensitivity.Conclusions: A single typical imaging modality is sufficient to diagnose small HCCs. Compared with MRI, multiphasic CT has a higher sensitivity. The limitations of MRI could be explained by the greater need for patient cooperation and the types of MRI contrast agent.

Accuracy of Live Fluoroscopy to Detect Intravascular Injection During Lumbar Transforaminal Epidural Injections

  • Lee, Min-Hye;Yang, Kyung-Seung;Kim, Young-Hoon;Jung, Hyun-Do;Lim, Su-Jin;Moon, Dong-Eon
    • The Korean Journal of Pain
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • Background: Complications following lumbar transforaminal epidural injection are frequently related to inadvertent vascular injection of corticosteroids. Several methods have been proposed to reduce the risk of vascular injection. The generally accepted technique during epidural steroid injection is intermittent fluoroscopy. In fact, this technique may miss vascular uptake due to rapid washout. Because of the fleeting appearance of vascular contrast patterns, live fluoroscopy is recommended during contrast injection. However, when vascular contrast patterns are overlapped by expected epidural patterns, it is hard to distinguish them even on live fluoroscopy. Methods: During 87 lumbar transforaminal epidural injections, dynamic contrast flows were observed under live fluoroscopy with using digital subtraction enhancement. Two dynamic fluoroscopy fluoroscopic images were saved from each injection. These injections were performed by five physicians with experience independently. Accuracy of live fluoroscopy was determined by comparing the interpretation of the digital subtraction fluoroscopic images. Results: Using digital subtraction guidance with contrast confirmation, the twenty cases of intravascular injection were found (the rate of incidence was 23%). There was no significant difference in incidence of intravascular injections based either on gender or diagnosis. Only five cases of intravascular injections were predicted with either flash or aspiration of blood (sensitivity = 25%). Under live fluoroscopic guidance with contrast confirmation to predict intravascular injection, twelve cases were predicted (sensitivity = 60%). Conclusions: This finding demonstrate that digital subtraction fluoroscopic imaging is superior to blood aspiration or live fluoroscopy in detecting intravascular injections with lumbar transforaminal epidural injection.

Changes in Cytosolic $Ca^{2+}$ but not in cGMP Contents May be more Important to Nitric Oxide-Mediated Relaxation in Depolarized Vascular Smooth Muscle

  • Lee, Hyun-Seok;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.63-68
    • /
    • 1998
  • Nitric oxide (NO)-mediated relaxation in vascular smooth muscle involves not only activation of guanylate cyclase but also hyperpolarization of the membrane. It has been shown that depolarization decreases the [$Ca^{2+}$] sensitivity of myosin light chain kinase in arterial smooth muscle, and nitric oxide (NO)-mediated relaxation was attenuated in this situation. However, why potassium inhibits or attenuates the action of EDRF/NO is not clear. Therefore, we investigated the magnitude of relaxation and cGMP contents using measures known to release NO, such as photorelaxation, photo activated NO-mediated relaxation, and NO-donor (SNP)-mediated relaxation in porcine coronary arterial rings in which contractile conditions were made by different degree of depolarization, i.e., contraction in response to U46619 or U46619 plus KCl. In all cases, the magnitude of relaxation was significantly greater (P<0.05) in U46619-contracted rings than in U46619+KCl-contracted ones. Although accumulation of cGMP was evident with three measures employed in the present study, no difference was found in cGMP contents between U46619 and U46619+KCl conditions, indicating that the diminished relaxation in KCl containing solution is cGMP-independent mechanism(s). To understand this further, cytosolic $Ca^{2+}$ changes due to NO were compared in rat thoracic aorta by exploiting photoactivated NO using streptozotocin (STZ) that was contracted with either NE or KCl. Fura-3 $[Ca]_{cyt}$ signal caused by NO was small and transient in high $K^+$-, but large and sustained in NE-contracted aorta. The inhibitory potency of STZ expressed in terms of $IC_{50}$ was 5.14 and 3.88 ${\mu}M$ in NE and in high $K^+$, respectively. These results suggest that modification of the cellular mobilization of $Ca^{2+}$ rather than cGMP levels may be an important mechanism for the NO-mediated relaxation when vascular membrane is depolarized, such as atherosclerosis and hypertension.

  • PDF

Role of Tyrosine Kinases in Vascular Contraction in Deoxycorticosterone Acetate-Salt Hypertensive Rats

  • Yeum, Cheol-Ho;Jun, Jae-Yeoul;Choi, Hyo-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.547-553
    • /
    • 1997
  • It has been known that activation of tyrosine kinases is involved in signal transduction. Role of the tyrosine kinase in vascular smooth muscle contraction was examined in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Male Sprague-Dawley rats underwent uninephrectomy, one week after which they were subcutaneously implanted with DOCA (200 mg/kg) and supplied with 1% NaCl and 0.2% KCl drinking water for $4{\sim}6$ weeks. Control rats were treated the same except for that no DOCA was implanted. Helical strips of carotid arteries were mounted in organ baths for measurement of isometric force development. Genistein was used as a tyrosine kinase inhibitor. Concentration-response curves to 5-hydroxytryptamine (5-HT) shifted to the right by genistein in both DOCA-salt hypertensive and control rats. Although the sensitivity to genistein was similar between the two groups, the maximum force generation by 5-HT was less inhibited by genistein in arteries from DOCA-salt hypertensive rats than in those from controls. Genistein-induced relaxations were attenuated in arteries from DOCA-salt rats. Genistein affected the contraction to phorbol 12, 13-dibutyrate (PDBu) neither in DOCA-salt nor in control arteries. These observations suggest that tyrosine kinase is involved in 5-HT-induced vascular contraction, of which role is reduced in DOCA-salt hypertension.

  • PDF

Encountering Peritoneo-Cutaneous Perforators in Microsurgical DIEP Flap Breast Reconstruction

  • Duncan Loi;Justin L. Easton;Warren M. Rozen
    • Archives of Plastic Surgery
    • /
    • v.50 no.2
    • /
    • pp.153-155
    • /
    • 2023
  • The vascular anatomy of the deep inferior epigastric artery perforator (DIEP) flap has been well studied in the planning for autologous breast reconstruction. Preoperative imaging with computed tomography angiography (CTA) provides accurate assessment of this vascular anatomy, which varies widely across patients. Several papers to date have described their encounter with an anomalous "epiperitoneal" or "peritoneo-cutaneous" perforator during flap harvest, a perforator that pierces the posterior rectus sheath from a peritoneal origin, to traverse rectus abdominis and supply the DIEP flap integument. In the course of over 3,000 CTA assessments of the vascular anatomy of the abdominal wall, we have encountered dominant peritoneo-cutaneous perforators in 1% of cases, and smaller perforators seen in many more cases, approaching 5% of cases. With increasing sensitivity of imaging, we also describe a unique case of multiple large bilateral peritoneo-cutaneous perforators, and present these findings in the context of DIEP flap harvest. It is critical to recognize these peritoneo-cutaneous perforators preoperatively to avoid mistaking them for a DIEP during the raising of a DIEP flap. The routine use of preoperative CTA enables the safe identification of individual vascular anatomy, including significant peritoneo-cutaneous perforators.

Incidence of Intravascular Penetration during Transforaminal Lumbosacral Epidural Steroid Injection (요부 경추간공 스테로이드 주입 시 혈관천자의 발생률)

  • Kim, Dong Won;Shim, Jae Chol
    • The Korean Journal of Pain
    • /
    • v.20 no.1
    • /
    • pp.26-30
    • /
    • 2007
  • Background: Epidural steroid injections (ESI) are a common treatment for spinal disorders. Previous research has shown that aspiration of the syringe is not a sensitive test for placement of an intravascular needle. Serious complications have been reported from injection of steroids and local anesthetics into the vascular space. In addition to safety concerns, the efficacy may decline with partial injection outside the desired epidural location. We hypothesized that incidence of vascular problems is increased in patients who undergo spine surgery compared with the patients who don't undergo spine surgery. We investigated the incidence of vascular problems during lumbosacral transforaminal ESI and we compared the difference of vascular problems between the patients who undergo spinal surgery and those patients who don't undergo spinal surgery. Methods: Two hundreds and three patients were consecutively recruited and they received 299 fluoroscopically guided lumbosacral transforaminal ESIs. Injection of contrast was performed under live dynamic fluoroscopy with using digital substraction analysis. The observed uptake pattern was classified into one of three categories: flashback, aspirated, and positive contrast with negative flashback and aspiration. Results: The vascular incidence rate was 20.4%. Transforaminal ESIs performed at S1 had avascular incidence rate of 27.8% compared with 17.7% for all the other lumbar injection sites. The sensitivity of spontaneous observation of blood in the needle hub or blood aspirate for predicting an intravascular injection in lumbar transforaminal ESIs was 70.4%. Conclusions: There is a high incidence of intravascular problems when performing transforaminal ESIs, and this is significantly increased in patients with previous spine surgery. Using a flash or blood aspiration to predict an intravascular injection is not sensitive therefore; a negative flash or aspiration is not reliable. Fluoroscopically guided procedures without contrast confirmation are prone to instill medications intravascularly. This finding confirms the need for not only fluoroscopic guidance, but also for contrast injection instillation when performing lumbosacral transforaminal ESIs, and especially for patients with previous spine surgery.

Role of $Na^+\;-K^+$ Pump on Endothelium-dependent Relaxation

  • Sung, Sang-Hyun;Roh, Joon-Ryang;Park, Tae-Sic;Suh, Suk-Hyo;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.199-207
    • /
    • 1993
  • To study the underlying mechanism through which the endothelium-dependent relaxation is inhibited by blocking the $Na^+\;-K^+$ pump, the effects of $Na^+\;-K^+$ pump blockade on the release of EDRF and its relaxing activity were examined, using organ bath study, bioassay technique, and cGMP measurement. Endothelium-dependent relaxation was attenuated by blocking the $Na^+\;-K^+$ pump in the vascular ring with intact endothelium. In bioassay experiment EDRF release was decreased with the blockade of the $Na^+\;-K^+$ pump in the EDRF donor strip. Endothelium-dependent increase of cGMP level was suppressed by inhibiting the $Na^+\;-K^+$ pump in the test strips. The magnitude of relaxation of test strip which was induced by the perfusate that had passed through the EDRF donor strip was decreased with the blockade of the $Na^+\;-K^+$ pump in the test strip. Therefore, it could be suggested that the attenuation of endothelium-dependent relaxation caused by inhibiting $Na^+\;-K^+$ pump activity is due to both the decreased release of EDRF from endothelial cells and the decreased sensitivity of the smooth muscle cells to EDRF.

  • PDF

Characterization of $ET_B$ Receptor-mediated Relaxation in Precontracted Mesenteric Artery from Streptozotocin-induced Diabetic Rats

  • Eom, Yang-Ki;Kim, Koan-Hoi;Rhim, Byung-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.305-314
    • /
    • 2005
  • Diabetes mellitus is associated with vascular complications, including an impairment of vascular function and alterations in the reactivity of blood vessels to vasoactive substances in various vasculature. In the present study, the authors have observed endothelin-B ($ET_B$) receptor agonist-induced relaxation in precontracted mesenteric arterial segments from streptozotocin (STZ)-induced diabetic rats, which was not shown from control rats or in other arterial segments from diabetic rats. Accordingly, the goal of this study was to investigate in what way STZ-induced diabetes altered reactivity of the mesenteric arterial bed and to examine the causal relaxation, if any, between this $ET_B$ receptor-mediated relaxation and endothelial paracrine function, especially nitric oxide (NO) production. The relaxation induced by $ET_B$ agonists was not observed in mesenteric arteries without endothelium. The relaxation to $ET_B$ agonists was completely abolished by pretreatment with BQ788, but not by BQ610. $N_{\omega}-nitro-L-arginine$ methyl ester and soluble guanylate cyclase inhibitors, methylene blue or LY83583 significantly attenuated the relaxant responses to $ET_B$ agonists, respectively. When the expression of eNOS and iNOS was evaluated on agarose gel stained with ethidium bromide, the expression of eNOS mRNA in diabetic rats was significantly decreased, but the expression of iNOS was increased compared with control rats. Furthermore, the iNOS-like immunostaining was densely detected in the endothelium and slightly in the arterial smooth muscle of diabetic rats, but not in control rats. These observations suggest that $ET_B$ receptor may not play a role in maintaining mesenteric vascular tone in normal situation. However, the alterations in $ET_B$ receptor sensitivity were found in diabetic rats and lead to the $ET_B$ agonist-induced vasorelaxation, which is closely related to NO production. In the state of increased vascular resistance of diabetic mesenteric vascular bed, enhanced NO production by activation of iNOS could lead to compensatory vasorelaxation to modulate adequate perfusion pressure to splanchnic area.

Usefulness of Bismuth Shielding in Cerebral Vascular Intervention (뇌혈관 중재적 시술 시 Bismuth 차폐체 설치의 유용성에 대한 연구)

  • Kim, Jae-seok;Son, Jin-hyun;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.179-182
    • /
    • 2017
  • Cerebral nervous system intervention procedures have been reported frequently due to radiation exposure such as skin baldness, hair loss, and redness due to prolonged procedures. Therefore, the bismuth shield designed to reduce the radiation exposure of the target organ located in the anterior part of the human body sensitive to skin and radiation sensitivity during CT (computed tomography) scan is applied to the cerebral vascular system intervention by ergonomic design, To reduce the radiation dose of sensitive scalp, we propose a study.

  • PDF

A Simulation Study of Impedance Plethysmography for Diagnosing Deep Vein Thrombosis (Deep Vein Thrombosis 진단을 위한 Impedance Plethysmography의 시뮬레이션 연구)

  • Lee, Jeon;Lee, Kyoung-Joung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.494-501
    • /
    • 2001
  • In this study, the effects of vascular parameter changes and electrodes on VOP measurement based on IPG were simulated mathematically. For the evaluation of the effects of hemodynamic changes on VOP, a mathematical model, which consists of cardiovascular system model and venous occlusion model, was developed and the model solution representing the blood flow and pressure in measuring point was found by 2nd order Runge-Kutta method. And, with sensitivity coefficients obtained from finite element solution of electric field in measuring point, the effects of electrode system on measurement were evaluated. As increasing the resistance, the venous capacitance was not changed but the venous outflows were decreased and the decreased compliance reduced the venous capacitance. And, for several configurations of round electrodes and band electrodes, the sensitivity coefficients were computed using the electric field distribution along deep vein. In conclusion, the proposed mathematical cardiovascular model could be applied to the simulation study on the effects of hemodynamic parameters on DVT diagnosis with IPG. And, also the sensitivity coefficients could provide effective electrode configuration for exact measurement of VOP.

  • PDF