• 제목/요약/키워드: vascular network

검색결과 103건 처리시간 0.023초

Different effects of prolonged β-adrenergic stimulation on heart and cerebral artery

  • Shin, Eunji;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin;Kim, Nari
    • Integrative Medicine Research
    • /
    • 제3권4호
    • /
    • pp.204-210
    • /
    • 2014
  • The aim of this review was to understand the effects of ${\beta}$-adrenergic stimulation on oxidative stress, structural remodeling, and functional alterations in the heart and cerebral artery. Diverse stimuli activate the sympathetic nervous system, leading to increased levels of catecholamines. Long-term overstimulation of the ${\beta}$-adrenergic receptor (${\beta}AR$) in response to catecholamines causes cardiovascular diseases, including cardiac hypertrophy, stroke, coronary artery disease, and heartfailure. Although catecholamines have identical sites of action in the heart and cerebral artery, the structural and functional modifications differentially activate intracellular signaling cascades. ${\beta}AR$-stimulation can increase oxidative stress in the heart and cerebral artery, but has also been shown to induce different cytoskeletal and functional modifications by modulating various components of the ${\beta}AR$ signal transduction pathways. Stimulation of ${\beta}AR$ leads to cardiac dysfunction due to an overload of intracellular $Ca^{2+}$ in cardiomyocytes. However, this stimulation induces vascular dysfunction through disruption of actin cytoskeleton in vascular smooth muscle cells. Many studies have shown that excessive concentrations of catecholamines during stressful conditions can produce coronary spasms or arrhythmias by inducing $Ca^{2+}$-handling abnormalities and impairing energy production in mitochondria, In this article, we highlight the different fates caused by excessive oxidative stress and disruptions in the cytoskeletal proteome network in the heart and the cerebral artery in responsed to prolonged ${\beta}AR$-stimulation.

Differentially expressed mRNAs and their upstream miR-491-5p in patients with coronary atherosclerosis as well as the function of miR-491-5p in vascular smooth muscle cells

  • Ding, Hui;Pan, Quanhua;Qian, Long;Hu, Chuanxian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권3호
    • /
    • pp.183-193
    • /
    • 2022
  • MicroRNAs (miRNAs) regulate gene expression and are biomarkers for coronary atherosclerosis (AS). A novel miRNA-mRNA regulation network of coronary AS still needs to be disclosed. The aim of this study was to analyze potential mRNAs in coronary AS patients and the role of their upstream miR-491-5p in vascular smooth muscle cells (VSMCs). We first confirmed top ten mRNAs according to the analysis from Gene Expression Omnibus database (GSE132651) and examined the expression levels of them in the plaques and serum from AS patients. Five mRNAs (UBE2G2, SLC16A3, POLR2C, PNO1, and AMDHD2) presented significantly abnormal expression in both plaques and serum from AS patients, compared with that in the control groups. Subsequently, they were predicted to be targeted by 11 miRNAs by bioinformatics analysis. Among all the potential upstream miRNAs, only miR-491-5p was abnormally expressed in the plaques and serum from AS patients. Notably, miR-491-5p overexpression inhibited viability and migration, and significantly increased the expression of contractile markers (α-SMA, calponin, SM22α, and smoothelin) in VSMCs. While silencing miR-491-5p promoted viability and migration, and significantly suppressed the expression of α-SMA, calponin, SM22α, and smoothelin. Overall, miR-491-5p targeted UBE2G2, SLC16A3, and PNO1 and regulated the dysfunctions in VSMCs.

Automatically Diagnosing Skull Fractures Using an Object Detection Method and Deep Learning Algorithm in Plain Radiography Images

  • Tae Seok, Jeong;Gi Taek, Yee; Kwang Gi, Kim;Young Jae, Kim;Sang Gu, Lee;Woo Kyung, Kim
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권1호
    • /
    • pp.53-62
    • /
    • 2023
  • Objective : Deep learning is a machine learning approach based on artificial neural network training, and object detection algorithm using deep learning is used as the most powerful tool in image analysis. We analyzed and evaluated the diagnostic performance of a deep learning algorithm to identify skull fractures in plain radiographic images and investigated its clinical applicability. Methods : A total of 2026 plain radiographic images of the skull (fracture, 991; normal, 1035) were obtained from 741 patients. The RetinaNet architecture was used as a deep learning model. Precision, recall, and average precision were measured to evaluate the deep learning algorithm's diagnostic performance. Results : In ResNet-152, the average precision for intersection over union (IOU) 0.1, 0.3, and 0.5, were 0.7240, 0.6698, and 0.3687, respectively. When the intersection over union (IOU) and confidence threshold were 0.1, the precision was 0.7292, and the recall was 0.7650. When the IOU threshold was 0.1, and the confidence threshold was 0.6, the true and false rates were 82.9% and 17.1%, respectively. There were significant differences in the true/false and false-positive/false-negative ratios between the anterior-posterior, towne, and both lateral views (p=0.032 and p=0.003). Objects detected in false positives had vascular grooves and suture lines. In false negatives, the detection performance of the diastatic fractures, fractures crossing the suture line, and fractures around the vascular grooves and orbit was poor. Conclusion : The object detection algorithm applied with deep learning is expected to be a valuable tool in diagnosing skull fractures.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • 제54권9호
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

Heart Disease Prediction Using Decision Tree With Kaggle Dataset

  • Noh, Young-Dan;Cho, Kyu-Cheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.21-28
    • /
    • 2022
  • 심혈관질환은 심장질환과 혈관질환 등 순환기계통에 생기는 모든 질병을 통칭한다. 심혈관질환은 2019년 사망의 1/3을 차지하는 전 세계 사망의 주요 원인이며, 사망자는 계속 증가하고 있다. 이와 같은 질병을 인공지능을 활용해 환자의 데이터로 미리 예측이 가능하다면 질병을 조기에 발견해 치료할 수 있을 것이다. 본 연구에서는 심혈관질환 중 하나인 심장질환을 예측하는 모델들을 생성하였으며 Accuracy, Precision, Recall의 측정값을 지표로 하여 모델들의 성능을 비교한다. 또한 Decision Tree의 성능을 향상시키는 방법에 대해 기술한다. 본 연구에서는 macOS Big Sur환경에서 Jupyter Notebook으로 Python을 사용해 scikit-learn, Keras, TensorFlow 라이브러리를 이용하여 실험을 진행하였다. 연구에 사용된 모델은 Decision Tree, KNN(K-Nearest Neighbor), SVM(Support Vector Machine), DNN(Deep Neural Network)으로 총 4가지 모델을 생성하였다. 모델들의 성능 비교 결과 Decision Tree 성능이 가장 높은 것으로 나타났다. 본 연구에서는 노드의 특성배치를 변경하고 트리의 최대 깊이를 3으로 지정한 Decision Tree를 사용하였을 때 가장 성능이 높은 것으로 나타났으므로 노드의 특성 배치 변경과 트리의 최대 깊이를 설정한 Decision Tree를 사용하는 것을 권장한다.

전두사골 뇌수막류의 폐쇄를 위한 양경 측두근골막피판의 유용성 (Usefulness of Bipedicle Temporalis-pericranial Flap for Closure of Frontoethmoidal Encephalomeningoceles)

  • 윤병민
    • 대한두개안면성형외과학회지
    • /
    • 제10권2호
    • /
    • pp.97-102
    • /
    • 2009
  • Purpose: To close anterior cranial base, various types of pedicle flaps have been developed previously. However, the results of those pedicle flaps were not constant. To solve such problem, the author designed bipedicle temporalis-pericranial (BTP) flap based on various types of existing flaps and this study intends to introduce this flap and present clinical application case. Methods: The pedicle of the proposed temporalis-pericranial flap is temporalis muscle. The point of this BTP flap is that because of both sides of the unilateral temporalis-pericranial flap are connected by midline pericranial tissue connected with dense vascular network communicate one another locally, that BTP flap can be safely elevated. The case is a 14 months old male patient of frontoethmoidal encephalomeningocele. Surgery was done in a way that after elevating BTP flap and removing encephalomeningocele, BTP flap was moved intracranially, and to prevent cerebrospinal fluid leakage, anterior cranial base was closed. Results: During 1 year and 6 month outpatient tracking observation, no particular finding like CSF leakage, meningitis or hydrocephalus was observed. Conclusion: The benchmarked BTP flap, effective in the treatment of frontoethmoidal encephalomeningocele, is one of the methods to close intracranium and extracranium.

후상치조신경 마취 후 발생된 복시 및 하직근 마비;발생기전에 관한 고찰 (DIPLOPIA AND INFEIRO RECTUS MUSCLE PALSY AFTER POSTERIOR SUPERIOR ALVEOLAR NERVE BLOCK)

  • 김운규
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제23권5호
    • /
    • pp.461-470
    • /
    • 2001
  • A unhealthy 58-year-old male patient required extraction of left upper second molar due to advanced periodontitis. Lidocaine contained 1 : 100000 epinephrine for left posterior superior alveolar nerve block was administered in the mucobuccal fold above the second molar to be treated at the local private dental clinic. After four hours of posterior superior alveolar block anesthesia, patient feeled double vision and discomfort of eyeball movement. At next day, he complained difficulty of left eyeball movement, vertigo and diplopia. He was referred to our department via local clinic and department of ophthalomology of our hospital. He was treated by medication and eyeball exercise, and then follow up check. The double vision and medial rectus muscle palsy disappeared patially after 2 months of block anesthesia. We described herein an ocular complication of diplopia and inferior rectus muscle palsy after posterior superior alveolar nerve block for extraction of left upper second molar, and review the cause or origin of this case. The autonomic nervous system is presented as the logical basis for the untoward systems of ophthalmologic sign likely to diplopia and inferior rectus muscle palsy, rather then simple circulation of anesthetic solution in the vascular network.

  • PDF

원위피판술을 시행한 환자의 손가락에 수술용 고무장갑을 이용한 간단한 조형법 (Simple Molding Method for Post-distant Flap Stated Finger by Using Surgical Rubber Gloves)

  • 김호길;최환준;김미선;신호성;탁민성
    • Archives of Plastic Surgery
    • /
    • 제33권2호
    • /
    • pp.263-267
    • /
    • 2006
  • In both cosmetic and functional aspects, loss of digital pulp is a common problem. Compound or composite defects of the hand and fingers with exposed denuded tendon, bone, joint, or neurovascular structures may require flap coverage. Most often these lesions can be repaired by using simple local flap, neurovascular flap, thenar flap, and cross-finger flap. But microvascular reconstruction is sometimes needed for large defects. But Authors do not recommend these procedures in case of severe crushing injuries involving multiple finger pulp losses because they have possibility of damage of the vascular network and infection. So we applied distant flaps such as chest flaps, groin flaps, abdominal flaps and etc. And then we applied surgical rubber gloves for remodeling the flap after cutaneous healing. We have acquired satisfactory results, after the simple molding method for distant flap finger by using surgical rubber gloves treatment.

Functional Reconstruction of a Combined Tendocutaneous Defect of the Achilles Using a Segmental Rectus Femoris Myofascial Construct: A Viable Alternative

  • DeFazio, Michael Vincent;Han, Kevin Dong;Evans, Karen Kim
    • Archives of Plastic Surgery
    • /
    • 제41권3호
    • /
    • pp.285-289
    • /
    • 2014
  • The composite anterolateral thigh flap with vascularized fascia lata has emerged as a workhorse at our institution for complex Achilles defects requiring both tendon and soft tissue reconstruction. Safe elevation of this flap, however, is occasionally challenged by absent or inadequate perforators supplying the anterolateral thigh. When discovered intraoperatively, alternative options derived from the same vascular network can be pursued. We present the case of a 74-year-old male who underwent composite Achilles defect reconstruction using a segmental rectus femoris myofascial free flap. Following graduated rehabilitation, postoperatively, the patient resumed full activity and was able to ambulate on his tip-toes. At 1-year follow-up, active total range of motion of the reconstructed ankle exceeded 85% of the unaffected side, and donor site morbidity was negligible. American Orthopaedic Foot and Ankle Society and Short Form-36 scores improved by 78.8% and 28.8%, respectively, compared to preoperative baseline assessments. Based on our findings, we advocate for use of the combined rectus femoris myofascial free flap as a rescue option for reconstructing composite Achilles tendon/posterior leg defects in the setting of inadequate anterolateral thigh perforators. To our knowledge, this is the first report to describe use of this flap for such an indication.

Allicin Reduces Adhesion Molecules and NO Production Induced by γ-irradiation in Human Endothelial Cells

  • Son, Eun-Wha;Cho, Chul-Koo;Pyo, Suhkneung
    • IMMUNE NETWORK
    • /
    • 제2권1호
    • /
    • pp.6-11
    • /
    • 2002
  • Background: Inflammation is a frequent reaction following therapeutic irradiation. Since the upregulation of adhesion molecules on endothelial cell surface is known to be associated with inflammation, the expression of adhesion molecules is an important therapeutic target. Methods: Treatment of human umbilical endothelial cells (HUVECs) with ${\gamma}$-irradiation (${\gamma}IR$) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Changes in the expression of these proteins on ${\gamma}$-irradiated HUVECs which had been treated previously with allicin were measured by ELISA. Results: In the present study, we demonstrate that allicin inhibits the ${\gamma}IR$ induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose-dependent manner. Allicin was also found to inhibit the ${\gamma}IR$ induced production of nitric oxide (NO). Conclusion: These data suggest that allicin has a therapeutic potential for the treatment of various inflammatory disorders associated with increase numbers of endothelial leukocyte adhesion molecules.