• Title/Summary/Keyword: varied flow

Search Result 1,100, Processing Time 0.022 seconds

Heat Transfer and Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube (초임계 $CO_2$의 헬리컬 코일관 내 열선단과 압력강하 특성)

  • Yu, Tae-Guen;Kim, Dae-Hui;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.353-358
    • /
    • 2005
  • The heat transfer and pressure drop of supercritical $CO_2$ cooled in a helically coiled tube was investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The experimental apparatus of the refrigerant loop consist of receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a helically coiled tube in tube counter flow heat exchanger with $CO_2$ flowed inside the inner tube and coolant( water) flowed along the outside annular passage, It was made of it copper tube with the inner diameter of 4.55[mm]. the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were $200^{\sim}600$ [kg/m2s] and the inlet pressure of gas cooler varied from 7.5 [MPa] to 10.0 [MPa]. The main results are summarized as follows : The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

Properties of ITO on PES film in dependence on the coating conditions and vacuum annealing temperatures (증착조건과 진공열처리 온도에 따른 ITO/PES 박막의 특성 연구)

  • Lee, Jae-Young;Park, Ji-Hye;Kim, Yu-Sung;Chun, Hui-Gon;You, Yong-Zoo;Kim, Dae-Il
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.227-231
    • /
    • 2007
  • Transparent conducting indium tin oxide (ITO) films were deposited onto the Polyethersulfone (PES) substrate by using a magnetron sputter type negative metal ion source. In order to investigate the influence of cesium (Cs) partial pressure during deposition and annealing temperature on the optoelectrical properties of ITO/PES film the films were deposited under different Cs partial pressures and post deposition annealed under different annealing temperature from $100^{\circ}C$ to $170^{\circ}C$ for 20 min at $3\;{\times}\;10^{-1}$ Pa. Optoeleetrical properties of ITO films deposited without intentional substrate heating was influenced strongly by the Cs partial pressure and the Cs partial pressure of $1.5\;{\times}\;10^{-3}$ Pa was characterized as an optimal Cs flow condition. By increasing post-deposition vacuum annealing temperature both optical transmission in visible light region and electrical conductivity of ITO films were increased. Atomic force microscopy (AFM) micrographs showed that the surface roughness also varied with post-deposition vacuum annealing temperature.

Pore Structure and Characteristics of Hollow Spherical Carbon Foam According to Carbonization Temperature and Re-immersion Treatment (탄화온도 및 재담금 처리에 따른 중공형 탄소다공체의 기공구조 및 특성)

  • Yi, Eunju;Lee, Changwoo;Kim, Yangdo;Rhyim, Youngmok
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.24-30
    • /
    • 2013
  • Today, the modification of carbon foam for high performance remains a major issue in the environment and energy industries. One promising way to solve this problem is the optimization of the pore structure for desired properties as well as for efficient performance. In this study, using a sol-gel process followed by carbonization in an inert atmosphere, hollow spherical carbon foam was prepared using resorcinol and formaldehyde precursors catalyzed by 4-aminobenzoic acid; the effect of carbonization temperature and re-immersion treatment on the pore structure and characteristics of the hollow spherical carbon foam was investigated. As the carbonization temperature increased, the porosity and average pore diameter were found to decrease but the compression strength and electrical conductivity dramatically increased in the temperature range of this study ($700^{\circ}C$ to $850^{\circ}C$). The significant differences of X-ray diffraction patterns obtained from the carbon foams carbonized under different temperatures implied that the degree of crystallinity greatly affects the characteristics of the carbon form. Also, the number of re-impregnations of carbon form in the resorcinol-formaldehyde resin was varied from 1 to 10 times, followed by re-carbonization at $800^{\circ}C$ for 2 hours under argon gas flow. As the number of re-immersion treatments increased, the porosity decreased while the compression strength improved by about four times when re-impregnation was repeated 10 times. These results imply the possibility of customizing the characteristics of carbon foam by controlling the carbonization and re-immersion conditions.

Genetic Diversity and Population Structure of Potentilla freyniana in Korea (한국내 세잎양지꽃의 유전적 다양성과 집단구조)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.877-881
    • /
    • 2007
  • The genetic diversity and population structure of Potentilla freyniana in Korea were determined using genetic variations at 19 allozyme loci. Thirteen of the 19 loci (68.4%) showed detectable polymorphism. Genetic diversity at the population level was high ($H_{EP}$ = 0.270). Total genetic diversity values ($H_T$) varied between 0.190 and 0.584, giving an average overall polymorphic loci of 0.371. The interlocus variation of genetic diversity within populations ($H_S$) was high (0.354). On a per locus basis, the proportion of total genetic variation due to differences among populations ($G_{ST}$) ranged from 0.008 for Fe-2 to 0.310 for Gpi with a mean of 0.065, indicating that about 6.5% of the total allozyme variation was among populations. Wide geographic ranges, perennial herbaceous nature and the persistence of multiple generations are associated with the high level of genetic variation in P. freyniana. The estimate of gene flow based on $G_{ST}$, was high among Korean populations of P. freyniana (Nm =3.57). Although P. freyniana usually propagated by asexually-produced ramets, I could not rule out the possibility that sexual reproduction occurred at a low rate because each ramet may produce terminal flowers.

Rapid High Performance Liquid Chromatographic Quantification of Major Isoflavones in Soybeans and Soybean Pastes

  • Kim, Won-Chan;Kwon, Soon-Ho;Rhee, In-Koo;Hur, Jong-Moon;Jeong, Hyun-Hee;Choi, Sun-Ha;Lee, Kyung-Bok;Kang, Young-Hwa;Song, Kyung-Sik
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.24-27
    • /
    • 2006
  • A simple HPLC quantification method was developed for genistein, genistin, daidzein, and daidzin in soybeans and soybean products. The procedure used a $4.6{\times}100\;mm$ $Chromolith^{(R)}$ RP-18e column with a mobile phase of 1% HOAc in 20% MeOH to 1% HOAc in 80% MeOH for 10 min. The injection volume was $2\;{\mu}L$ at a flow rate of 2 mL/min. Detection was carried out under UV at 254 nm. Under these conditions, the major isoflavones daidzein, daidzin, genistein, and genistin in soybean and soybean pastes were eluted within 7 min with baseline separation. Optimal extraction of the above four major isoflavones was achieved when 40 g of soybean or soybean paste was refluxed in 100 mL of 95% ethanol for 2 hr. Ten different soybean cultivars and nine commercial soybean pastes were analyzed by this method. The total isoflavone content was highest in the cultivar Somyung ($2,497\;{\mu}g/g$ dry weight). The isoflavone content in soybean pastes varied widely from manufacturer to manufacturer (an almost five-fold difference between the highest and lowest values). Such variations were presumably due to differences in fermentation conditions, type of soybeans used, and levels of such additives as starch and salt.

Analysis of Nutrient Load Balance in the Reservoir Irrigated Paddy Block (저수지 관개 광역 논의 영양물질 수지 분석)

  • Song, Jung-Hun;Kang, Moon-Seong;Song, Inhong;Hwang, Soon-Ho;Park, Jihoon;Jun, Sang-Min;Kim, Kye-Ung;Jang, Jeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.167-175
    • /
    • 2013
  • The objective of this study was to investigate the nutrient load balance in the reservoir irrigated paddy block during growing seasons. Idong reservoir irrigation paddy block of 10.3 ha in size was selected to collect hydrologic and water quality data. Irrigation, canal flows, and paddy field drainage were measured using a water level gauge, while water samples were collected and analysed for water quality. The water balance analysis showed that 81 % and 75 % of total outflow were through paddy and irrigation canal drainage during 2011 and 2012, respectively. The water quality of paddy field drainage varied greatly depending on rice cultivation stage ranging from 0.05 to 24.55 mg/L and from 0.01 to 0.76 mg/L for T-N and T-P, correspondently. Paddy field drainage loads during May through June account for 64 % and 76 % in 2012 and 2013, while 82 % and 81 % for T-P in 2011 and 2012, respectively. The Pearson correlation analysis showed that rainfall was significantly correlated with nutrient loads during July through August due to runoff, and irrigation was related with nutrient loads of drainage during some period of July through September due to irrigation return flow. This study results showed characteristics of inflow and outflow nutrient loads from plentiful irrigated paddy block.

Calculation of overtopping discharge with time-dependent aspects of an embankment failure (시간에 따른 제방붕괴 양상을 고려한 월류량 산정)

  • Kim, Hyung-Jun;Kim, Jong-Ho;Jang, Won-Jae;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.69-78
    • /
    • 2007
  • In this study, a time-dependent aspect of an embankment failure is considered to simulate a flood inundation map and calculate overtopping discharge induced by an embankment failure. A numerical model has been developed by solving the two dimensional nonlinear shallow water equations with a finite volume method on unstructured grids. To analyze a Riemann problem, the HLLC approximate Riemann solver and the Weighted Averaged Flux method are employed by using a TVD limiter and the source term treatment is also employed by using the operator splitting method. Firstly, the numerical model is applied to a dam break problem and a sloping seawall. Obtained numerical results show good agreements with experimental data. Secondly, the model is applied to a flow induced by an embankment failure by assuming that the width and elevation of embankment are varied with time-dependent functions. As a result of the comparison with each numerical overtopping discharge, established flood inundation discharges in the previous studies are overestimated than the result of the present numerical model.

Numerical Simulation of Turbulent Heat Transfer in a Channel with One Wavy Wall (파형벽면이 있는 채널내의 난류열전달에 대한 수치해석)

  • Park Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.49-59
    • /
    • 2005
  • Turbulent heat transfer over a fully-developed wavy channel is investigated by a turbulence model. The nonlinear k- f - f$_{ model of Park et at.[1] is slightly modified and their explicit algebraic heat flux model is employed. The Reynolds number is fixed at Re$_{b}$=6760 and the wave configuration is varied in the range of 0 $\leq$ $\alpha$/$\lambda$$\leq$0.15 and 0.25 $\leq$A/H$\leq$4.0. In order to verify model performances, a large eddy simulation is performed for the selected cases. The model performance is shown to be generally satisfactory. By using k- $\varepsilon$ - f$_{ model, the enhancement of heat transfer and the characteristics of turbulent flow in wavy wall are investigated. Finally, the influence of wavy configuration on heat transfer is scrutinized.

Performance Enhancement of the Heat Pump Using the Refrigerant Subcooling System (냉매 과냉각 시스템을 이용한 열펌프의 성능향상에 관한 연구)

  • 손창효;윤찬일;박승준;이동건;오후규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.106-111
    • /
    • 2001
  • The performance characteristics of heat pump system using the new refrigerant subcooling system were investigated. The new heat pump system has the ice storage tank to accumulate the latent heat of the refrigerant during the night-time. The heat is released to subcool the saturated refrigerant liquid at the outlet of a condenser in the daytime. The experimental apparatus is a well-instrumented heat pump which consisted of a refrigerant loop and a coolant loop. The test sections(condenser and evaporator) were made of tube-in-tube heat exchanger with the horizontal copper tube of 12.7[mm] outer diameter and 9.5[mm] inner diameter. The evaporating temperatures ranged from $-5[^{\circ}C]$ to $0[^{\circ}C]$ and the subcooling degrees of the refrigerant varied from $15[^{\circ}C]$ to $25[^{\circ}C]$. The test of the ice storage was carried out at evaporating temperature of $-10[^{\circ}C]$ and the ice storage mode is an ice-on-coil type. The main results were summarized as follows ; The refrigerant mass flow rate and compressor shaft power of the heat pump system were independent of the subcooling degrees. The cooling capacity o the heat pump system increases as the evaporating temperature and subcooling degree increases. The cooling capacity of the heat pump system is about 25 to 30% higher than that of normal heat pump system. The COP of the heat pump system which subcooled the refrigerant liquid at the outlet of the condenser is about 28% higher than that of the normal heat pump system.

  • PDF

Flame Structure and NOx Emission Characteristics in Laminar Partially Premixed CH4/Air Flames: Effects of Fuel Split Percentage and Mixing Distance (메탄/공기 층류 부분예혼합화염의 화염구조와 NOx 배출특성 : 연료분배율과 혼합거리의 영향)

  • Jeong, Yong-Ki;Lee, Jong-Ho;Lee, Suk-Young;Jeon, Chung-Hwan;Chan, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.818-825
    • /
    • 2004
  • In this paper, the study of effects of flow parameters on flame structure and NOx emission concentration was performed in co-axial. laminar partially premixed methane/air flames. Such (low parameters as equivalence ratio(${\Phi}$), fuel split percentage($\sigma$), and mixing distance(x/D$\_$i/) were defined as a premixing degree and varied within ${\Phi}$=1.36∼9.52, $\sigma$=50∼100, and x/D$\_$i/=5∼20. The image of OH$\^$*/ and NOx concentration were obtained with an ICCD camera and a NOx analyzer. The flame structure observations show a categorization of partially premixed flames into three distinct flame regimes corresponding to ${\Phi}$<1.7(premixed flame structure), 1.7<${\Phi}$<3.3(hybrid structure), and ${\Phi}$>3.3(diffusion flame structure existing a luminous sooting region) at $\sigma$=75%, and x/D$\_$i/=10. As o decreases from 100% to 50%, and x/D$\_$i/ decreases, nonpremixed flame structure appear at low equivalence ratio relatively. In addition, the measured emissions for NOx rise steeply from ${\Phi}$=1.7, to ${\Phi}$=3.3, then constants ${\Phi}$>4.76. NOx emissions decrease with increase the level of premixing level. In conclusion, the main effect on flame structure and NOx production was at first equivalence ratio(${\Phi}$), and next fuel split percentage($\sigma$), and finally mixing distance(x/D$\_$i/).