DOI QR코드

DOI QR Code

Flame Structure and NOx Emission Characteristics in Laminar Partially Premixed CH4/Air Flames: Effects of Fuel Split Percentage and Mixing Distance

메탄/공기 층류 부분예혼합화염의 화염구조와 NOx 배출특성 : 연료분배율과 혼합거리의 영향

  • 정용기 (부산대학교 대학원 기계공학과) ;
  • 이종호 (부산대학교 대학원 기계공학) ;
  • 이석영 (부산대학교 대학원 기계공학) ;
  • 전충환 (부산대학교 기계공학과 기계기술연구) ;
  • 장영준 (부산대학교 기계공학부)
  • Published : 2004.07.01

Abstract

In this paper, the study of effects of flow parameters on flame structure and NOx emission concentration was performed in co-axial. laminar partially premixed methane/air flames. Such (low parameters as equivalence ratio(${\Phi}$), fuel split percentage($\sigma$), and mixing distance(x/D$\_$i/) were defined as a premixing degree and varied within ${\Phi}$=1.36∼9.52, $\sigma$=50∼100, and x/D$\_$i/=5∼20. The image of OH$\^$*/ and NOx concentration were obtained with an ICCD camera and a NOx analyzer. The flame structure observations show a categorization of partially premixed flames into three distinct flame regimes corresponding to ${\Phi}$<1.7(premixed flame structure), 1.7<${\Phi}$<3.3(hybrid structure), and ${\Phi}$>3.3(diffusion flame structure existing a luminous sooting region) at $\sigma$=75%, and x/D$\_$i/=10. As o decreases from 100% to 50%, and x/D$\_$i/ decreases, nonpremixed flame structure appear at low equivalence ratio relatively. In addition, the measured emissions for NOx rise steeply from ${\Phi}$=1.7, to ${\Phi}$=3.3, then constants ${\Phi}$>4.76. NOx emissions decrease with increase the level of premixing level. In conclusion, the main effect on flame structure and NOx production was at first equivalence ratio(${\Phi}$), and next fuel split percentage($\sigma$), and finally mixing distance(x/D$\_$i/).

Keywords

References

  1. Lyle, K. H., Tseng, L. K., Gore, J. P. and Laurendeau, N. M., 1999, 'A Study of Pollutant Emission Characteristics of Partially Premixed Turbulent Jet Flames,' Comb. and Flame, Vol. 116, pp. 627-639 https://doi.org/10.1016/S0010-2180(98)00068-6
  2. Katta, V. R., Brenez, L. and Rolon, J. C., 2000, 'Experimental and Numerical Investigation of Structures of Two-Dimensional Partially Premixed Methane/air Flames,' Proceedings of the Combustion Institute, Vol. 28, pp. 1909-1916 https://doi.org/10.1016/S0082-0784(00)80595-0
  3. Lee, T. W., Fenton, M. and Shankland, R., 1997, 'Effects of Variable Partial Premixing on Turbulent Jet Flame Structure,' Comb. and Flame, Vol. 109, pp. 536-548 https://doi.org/10.1016/S0010-2180(97)00033-3
  4. Lockett, R. D., Boulanger, B., Harding, S. C. and Greenhalgh, D. A., 1999, 'The Structure and Stability of the Laminar Counter-Flow Partially Premixed Methane/Air Triple Flame,' Comb. and Flame, Vol. 119, pp. 109-120 https://doi.org/10.1016/S0010-2180(99)00046-2
  5. Gore, J. P. and Zhan, N. J., 1996, 'NOx Emission and Major Species Concentrations on Partially Premixed Laminar Methane/Air Co-Flow Jet Flames,' Comb. and Flame, Vol. 105, pp. 417-427 https://doi.org/10.1016/0010-2180(95)00177-8
  6. Nishioka, M., Nakagawa, S., Ishikawa,Y. and Takeno, T., 1998, 'No Emission Characteristics of Methane-Air Coflow Partially Premixed Flame,' 27th Sym.(Int.) on Combustion, pp. 1369-1376
  7. Lee, T. W., Mitrovic, M. and Wang, T., 2000, 'Temperature, Velocity, and Nox/CO Emission Measurements in Turbulent Flames: Effects of Partial Premixing with Central Fuel Injection,' Comb. and Flame, Vol. 121, pp. 378-385 https://doi.org/10.1016/S0010-2180(99)00123-6
  8. Rokke, N. A., Hustad, J. E. and Sonju, O. K., 1994, 'A Study of Partially Premixed Unconfined Propane Flames,' Comb. and Flame, Vol. 97, pp. 88-106 https://doi.org/10.1016/0010-2180(94)90118-X
  9. Heitor, M. V. and Moreira, A. L. N., 1993, 'Thermocouples and Sample Probes for Combustion Studies,' Prog. Energy Combust. Sci., Vol. 19, pp. 259-278 https://doi.org/10.1016/0360-1285(93)90017-9
  10. Chen, R. H. and Driscoll, J. F., 1990, 'Nitric Oxide Levels of Turbulent Jet Diffusion Flames : Effects of Coaxial Air and Other Mixing Parameters,' 23rd Sym.(Int.) on Combustion, pp. 281-288
  11. Shih, W. P., Lee, J. G. and Santavica, D. A., 1996, 'Stability and Emission Characteristics of a Lean Premixed Gas Turbine Comustor,' 26th Sym. (Int.) on Combustion, pp. 2771-2778
  12. Kim, T. W., Alder, B. J., Laurendeau, N. M. and Gore, J. P., 1995, 'Exhaust and In-Situ Measurements of Nitric Oxide for Laminar Partially Premixed $C_2H_{6}$-Air Flames: Efffect of Premixing Level at Constant Fuel Flowrate,' Comust. Sci. and Tech., Vol. 110, pp. 361-378 https://doi.org/10.1080/00102209508951931
  13. Driscoll, J. F., Huh, H., Yoon, Y. B. and Donbar, J., 1996, 'Measured Lengths of Supersonic Flame Lengths-and Analysis,' Comb. and Flame, Vol. 107, pp. 176-186 https://doi.org/10.1016/0010-2180(96)00048-X
  14. Driscoll, J. F., Chen, R. H. and Yoon, Y. B., 1992, 'Nitric Oxide Levels of Turbulent Jet Diffusion Flames : Effects of Residence Time and Damkohler Number,' Comb. and Flame, Vol. 88, pp. 37-49 https://doi.org/10.1016/0010-2180(92)90005-A
  15. Turns, S. R. and Myhr, F. H., 1991, 'Oxides of Nitrogen Emissions From Turbulent Jet Flames: Part1-Fuel Effects and Flame Radiation,' Comb. and Flame, Vol. 87, pp. 319-335 https://doi.org/10.1016/0010-2180(91)90116-S