• Title/Summary/Keyword: variations by region

Search Result 695, Processing Time 0.027 seconds

On Annual Variations of Sea Water and Air Temperatures, and Sea-Air Temperature Separation in the East Sea (Japan Sea) (동해의 수온, 기온 및 해면 온도차의 연변화)

  • KANG Yong Q.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.4
    • /
    • pp.374-380
    • /
    • 1985
  • The annual variations of sea surface temperature (SST), air temperature (AT), and sea-air temperature separation (SST-AT) in the East Sea (Japan Sea) are studied by harmonic analysis of the monthly data in 2 by 2 degree rectangles. In the Tsushima Current region of the Japan Sea, the annual means of SST and AT are high due to warm water advection by the current, and the annual amplitudes of SST and AT are small because the annual variations of heat advection the the current and of the incoming solar radiation are almost out of phase each other. In summer the SST and the AT in the Japan Sea are almost the same, but in winter the SST is $6{\sim}10^{\circ}C$ higher than the AT. The physical processes responsible for the observed SST-AT in the Japan Sea and their consequences in the sea-air thermal interactions are discussed in this paper.

  • PDF

Analysis of CHAMP Magnetic Anomalies for Polar Geodynamic Variations

  • Kim Hyung Rae;von Frese Ralph R.B.;Park Chan-Hong;Kim Jeong Woo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.91-98
    • /
    • 2005
  • On board satellite magnetometer measures all possible magnetic components, such as the core and crustal components from the inner Earth, and magnetospheric, ionospheric and' its coupled components from the outer Earth. Due to its dipole and non-dipole features, separation of the respective component from the measurements is most difficult unless the comprehensive knowledge of each field characteristics and the consequent modeling methods are solidly constructed. Especially, regional long wavelength magnetic signals of the crust are strongly masked by the main field and dynamic external field and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar region relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects that are closely related to the geomagnetic storms affecting ionospheric current disturbances. To help isolate regional lithospheric anomalies from core field components, the correlations between CHAMP magnetic anomalies and the pseudo-magnetic effects inferred from satellite gravity-derived crustal thickness variations can also be exploited, Isolation of long wavelengths resulted from the respective source is the key to understand and improve the models of the external magnetic components as well as of the lower crustal structures. We expect to model the external field variations that might also be affected by a sudden upheaval like tsunami by using our algorithm after isolating any internal field components.

Inadvertent Dural Puncture during Caudal Approach by the Introducer Needle for Epidural Adhesiolysis Caused by Anatomical Variation

  • Kim, Si Gon;Yang, Jong Yeun;Kim, Do Wan;Lee, Yeon Ju
    • The Korean Journal of Pain
    • /
    • v.26 no.2
    • /
    • pp.203-206
    • /
    • 2013
  • There have been reports of abnormalities in the lumbosacral region involving a lower-than-normal termination of the dural sac, which is caused by disease or anatomical variation. Inadvertent dural puncture or other unexpected complications can occur during caudal epidural block or adhesiolysis in patients with these variations, but only a small number of case reports have described this issue. We report a case of dural puncture by the introducer needle before attempting caudal epidural adhesiolysis, which occurred even though the needle was not advanced upward after penetrating the sacrococcygeal ligament. Dural puncture was caused by a morphological abnormality in the lumbosacral region, with no pathological condition; the dural sac terminal was located more distally than normal. However, dural puncture could have been prevented if we had checked for such an abnormality in the magnetic resonance imaging (MRI) taken before the procedure.

A study on the variations of water temperature and sonar performance using the empirical orthogonal function scheme in the East Sea of Korea (동해에서 경험직교함수 기법을 이용한 수온과 소나성능 변화 연구)

  • Young-Nam Na;Changbong Cho;Su-Uk Son;Jooyoung Hahn
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • For measuring the performance of passive sonars, we usually consider the maximum Detection Range (DR) under the environment and system parameters in operation. In shallow water, where sound waves inevitably interacts with sea surface or bottom, detection generally maintains up to the maximum range. In deep water, however, sound waves may not interact with sea surface or/and bottom, and thus there may exist shadow zones where sound waves can hardly reach. In this situation, DR alone may not completely define the performance of each sonar. For complete description of sonar performance, we employ the concept 'Robustness Of Detection (ROD)'. In the coastal region of the East Sea, the spatial variations of water masses have close relations with DR and ROD, where the two parameters show reverse spatial variations in general. The spatial and temporal analysis of the temperature by employing the Empirical Orthogonal Function (EOF) shows that the 1-st mode represents typical pattern of seasonal variation and the 2-nd mode represents strength variations of mixed layers and currents. The two modes are estimated to explain about 92 % of the variations. Assuming two types of targets located at the depths of 5 m (shallow) and 100 m (deep), the passive sonar performance (DR) gives high negative correlations (about -0.9) with the first two modes. Most of temporal variations of temperature occur from the surface up to 200 m in the water column so that when we assume a target at 100 m, we can expect detection performance of little seasonal variations with passive sonars below 100 m.

LONGITUDINAL AND SEASONAL VARIATIONS OF THE ELECTRON TEMPERATURE AND DENSITY IN THE LOW_LATITUDE TOPSIDE IONOSPHERE OBSERVED BY KOMPSAT-1 (다목적 실용위성 1호로 측정한 저위도 상부 이온층의 전자 온도와 전자 밀도의 경도 및 계절별 변화)

  • Kim, Hee-jun;Park, Sun-Mie;Lee, Jae-Jin;Lee, En-sang;Min, Kyoung-Wook;Han, Won-yong;Nam, Uk-Won;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2002
  • The electron density and temperature in the topside ionosphere are observed by the ionosphere Measurement Sensor (IMS) onboard the KOMPSAT-1, which has the sun-synchronous orbit of the altitude of 685 km and the orbital inclination of $98^{\circ}$ with a descending node at 22:50LT. Observations have been analyzed to determine the seasonal variations of the electron density and temperature in the low-latitude region. Only the night-time (22:50LT) behavior on magnetically quiet days (Kp < 4) has been examined. Observations show a strong longitudinal and seasonal variation. Generally, in the dip equator the density increases and the temperature decreases. In equinox the latitudinal distributions of the electron density and temperature are quite symmetric about the dip equator. However, the local maximum of the density and the local minimum of the temperature shift toward the Northern hemisphere in summer solstice but the Southern hemisphere in winter solstice. Such variations are due to the influences of field-aligned plasma transport induced by F region neutral wind. Compared with the IRI95 model, the observed electron density and temperature show significant differences from those predicted by the IRI95 model.

Seasonal Variation of Airborne Chlorides in Coast by Sea Area and Region, South Korea (해역 및 지역에 따른 해안가 대기중 염분량의 계절적 변동)

  • Jung, Jahe;Lee, Jong-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.611-619
    • /
    • 2023
  • The first survey of the airborne chlorides along the nationwide coast of South Korea was conducted 18 years ago, and the area index of coastal airborne chlorides and salt attack environmental rating are being utilized in the design, construction, and maintenance of domestic structures. However, due to environmental changessuch as climate change and coastal topography changes, changes of airborne chlorides along the coast are expected to occurregionally and by sea area. Therefore, the second survey has been conducted since 2021. Inthis paper, we analyzed the seasonal variations of airborne chlorides along the coast by region and sea area for one year of the second survey. Additionally, we compared the results withthe survey results of Japan's coastal airborne chlorides, which islocated close to South Korea and has a similar climate, to increase the objectivityofthe analysis. The averageairborne chloridesin the second surveywas highest on the west coast, and the seasonal variation was also the largest on the west coast. Looking at the seasonal variations by sea area, the East Sea had highairborne chloridesinthe summer and autumn,theWestSea inthe autumnandwinter, and the SouthSea in the summer. In addition, compared to the firstsurvey, allsea areasshowed short periods ofsignificantly higher coastalsalinity and clearerseasonal variations.

Evaluation of Active Layer Depth using Dynamic Cone Penetrometer (동적 콘 관입기를 이용한 활동층 심도평가)

  • Hong, Won-Taek;Kang, Seonghun;Park, Keunbo;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • An active layer distributed on surface of an extreme cold region causes a frost heave by repeating the freezing and thawing according to the seasonal temperature change. Since the height of frost heave is greatly affected by the thickness of active layer, an accurate evaluation of the thickness of active layer is necessary for the safe design and construction of the infrastructure in the extreme cold region. In this study, dynamic cone penetrometer, which is miniaturized in-situ penetration device, is applied for the evaluation of active layer depth distribution. As the application tests, two dynamic cone penetration tests were conducted on the study sites located in Solomon and Alaska. In addition, ground temperature variations were obtained. As the results of the application tests, the depth of interface between the active layer and the permafrost was evaluated from the difference in dynamic cone penetration indexes of the active layer and the permafrost, and a layer was detected around the interface considered as an ice lens layer. Also, the interface depths between the above zero and the below zero temperature determined from the ground temperature variations correspond with the interface depths evaluated from the dynamic cone penetration tests. This study demonstrates that the dynamic cone penetrometer may be a useful tool for the evaluation of the active layer in the extreme cold region.

Influence of Dynamic Strain Aging on Tensile Deformation Behavior of Alloy 617

  • Ekaputra, I.M.W.;Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1387-1395
    • /
    • 2016
  • To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of $10^{-3}/s$, $10^{-4}/s$, and $10^{-5}/s$ from $24^{\circ}C$ to $950^{\circ}C$. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress-strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from $200^{\circ}C$ to $700^{\circ}C$. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above $700^{\circ}C$ was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.

Statistical Analysis of NOAA/AVHRR High Resolution Weekly SST in the East Sea: Regional Variability and Relationships with ENSO (동해지역 NOAA/AVHRR 고해상도 주평균 해수면 온도의 통계적 분석 : 지역적 변동성과 엘니뇨/남방진동과의 관계성)

  • Kwon, Tae-Yong;Lee, Bang-Yong;Lee, Jeong-Soon
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.361-376
    • /
    • 2001
  • The characteristics of SST variability in the East Sea are analyzed using NOAA/AVHRR weekly SST data with about $0.18^{\circ}{\times}0.18^{\circ}$ resolution ($1981{\sim}2000$) and reconstructed historical monthly SST data with $2^{\circ}{\times}2^{\circ}$ resolution $(1950{\sim}1998)$. The distinct feature of wintertime SST is high variability in the western and eastern parts of $38^{\circ}{\sim}40^{\circ}$ latitudinal band, which are the northern boundary of warm current in the East Sea during winter. However, summertime SST exhibits variability with similar magnitude in the entire region of the East Sea. The analysis of remote correlation also shows that SST in the East Sea is closely correlated with that in the region of Kuroshio in winter, but in summer is related with that in the western and eastern regions of the same latitudes. From these results it is postulated that the SST variability in the East Sea may be related with the variations of East Korean Warm Current and Tsushima Warm Current in winter, but in summer probably with the variations of atmospheric components. In the analysis of ENSO related SST anomaly, a significant negative correlation between SST anomalies in the East Sea and SST anomalies in the tropical Pacific is found in the months of August-October (ASO). The SST in the ASO period shows more significant cooling in E1 $Ni\~{n}o$ events than warming in La $Ni\~{n}a$ events. Also, the regional analysis shows by the Student's t-test that the negative SST anomalies in the E1 $Ni\~{n}o$ events are more significant in the southwestern part of the East Sea.

  • PDF

Estimation of CO2 Emission from a Eutrophic Reservoir in Temperate Region (온대지역 부영양 저수지의 이산화탄소 배출량 산정)

  • Chung, Se-Woong;Yoo, Ji-Su;Park, Hyung-Seok;Schladow, S. Geoffrey
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.433-441
    • /
    • 2016
  • Many large dams have been constructed for water supply, irrigation, flood control and hydropower in Korea for the last century. Meanwhile, recent studies indicated that the artificial reservoirs impounded by these dams are major sources of carbon dioxide (CO2) to the atmosphere and relevant to global budget of green house gases. However, limited information is available on the seasonal variations of CO2 evasion from the reservoirs located in the temperate monsoon regions including Korea. The objectives of this study were to estimate daily Net Atmospheric Flux (NAF) of CO2 in Daecheong Reservoir located in Geum River basin of Korea, and analyze the influencing parameters that characterize the variation of NAF. Daily pH and alkalinity (Alk) data collected in wet year (2012) and dry year (2013) were used for estimating the NAFs in the reservoir. The dissolved inorganic carbon (DIC) was computed using the pH and Alk measurements supposing an equilibrium state among the carbonate species. The results showed seasonal variations of NAF; negative NAFs from May to October when the primary production of the reservoir increased with water temperature increase, while positive NAF for the rest of the period. Overall the reservoir acted as sources of CO2 to the atmosphere. The estimated NAFs were 2,590 and 771 mg CO2 m-2d-1 in 2012 and 2013, respectively, indicating that the NAFs vary a large extent for different hydrological years. Statistical analysis indicated that the NAFs are negatively correlated to pH, water temperature, and Chl-a concentration of the reservoir.