Browse > Article
http://dx.doi.org/10.15681/KSWE.2016.32.5.433

Estimation of CO2 Emission from a Eutrophic Reservoir in Temperate Region  

Chung, Se-Woong (Department of Environmental Engineering, Chungbuk National University)
Yoo, Ji-Su (Department of Environmental Engineering, Chungbuk National University)
Park, Hyung-Seok (Department of Environmental Engineering, Chungbuk National University)
Schladow, S. Geoffrey (DeDepartment of Civil and Environmental Engineering, University of Califonia)
Publication Information
Abstract
Many large dams have been constructed for water supply, irrigation, flood control and hydropower in Korea for the last century. Meanwhile, recent studies indicated that the artificial reservoirs impounded by these dams are major sources of carbon dioxide (CO2) to the atmosphere and relevant to global budget of green house gases. However, limited information is available on the seasonal variations of CO2 evasion from the reservoirs located in the temperate monsoon regions including Korea. The objectives of this study were to estimate daily Net Atmospheric Flux (NAF) of CO2 in Daecheong Reservoir located in Geum River basin of Korea, and analyze the influencing parameters that characterize the variation of NAF. Daily pH and alkalinity (Alk) data collected in wet year (2012) and dry year (2013) were used for estimating the NAFs in the reservoir. The dissolved inorganic carbon (DIC) was computed using the pH and Alk measurements supposing an equilibrium state among the carbonate species. The results showed seasonal variations of NAF; negative NAFs from May to October when the primary production of the reservoir increased with water temperature increase, while positive NAF for the rest of the period. Overall the reservoir acted as sources of CO2 to the atmosphere. The estimated NAFs were 2,590 and 771 mg CO2 m-2d-1 in 2012 and 2013, respectively, indicating that the NAFs vary a large extent for different hydrological years. Statistical analysis indicated that the NAFs are negatively correlated to pH, water temperature, and Chl-a concentration of the reservoir.
Keywords
CO2 emission; Eutrophic reservoirs; Green house gases; Net Atmospheric Flux; Temperate monsoon region;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Park, J. C. (2003). Characteristics of DOC Release from Sediment in Eutrophic Lake, Korean Journal of Limnology, 36(3), pp. 304-310. [Korean Literature]
2 Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Durr, H., Meybeck, M. and Ciais, P., and Guth, P. (2013). Global Carbon Dioxide Emissions from Inland Waters, Nature, 503, pp. 355-359, doi:10.1038/naturel2760.   DOI
3 Santos, dos, M. A., Rosa, L. P., Sikar, B., Sikar, E., and dos Santos, E. D. (2006). Gross Greenhouse Gas Emissions from Hydro-power Reservoir Compared to Thermo-power Plants, Energy Policy, 34, pp. 481-488.   DOI
4 Seo, D. I. (1998). Stratification Characteristics and Water Quality Management Strategies of Daechung Lake, Journal of Korean Society of Environmental Engineers, 20(9), pp. 1219-1234. [Korean Literature]
5 Soumis, N., Duchemin, E., Canuel, R., and Lucotte, M. (2004). Greenhouse Gas Emissions from Reservoirs of the Western United States, Global Biogeochemical Cycles, 18, doi:10.1029/2003GB 002197.   DOI
6 The Committee of Management at Guem river system. (2011). Study on Constraining Algae for Management of Water Quality in the Daecheong and Boryeong Lake. [Korean Literature]
7 Therrien, J., Tremblay, A., Jacques, R. (2005). CO2 emissions from semi-arid reservoirs and natural aquatic ecosystems. L. Varfalvy, C. Roehm and M. Garneau (eds), Hydroelectric Reservoirs and Natural Environments. Environmental Science Series, Springer, New York, pp. 233-250.
8 Tracy, B. (2011). Carbon Fluxes and Carbon Loading at Lake Tahoe, California-Nevada, MS Thesis, UCDavis, CA, USA.
9 Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A., Varfalvy, L., dos Santos, M. A., and Matvienko, B. (2005). Carbon Dioxide and Methane Emissions and the Carbon Budget of a 10-years old Tropical Reservoir (Petit-Saut, French Guiana), Global Biogeochemical Cycles, 19, GB 4007, doi:10.1029/2005GB002457.   DOI
10 Almeida, F. V., Guimara, J. R., and Jardima, W. F. (2001). Measuring the CO2 Flux at the Air/Water Interface in Lakes using Flow Injection Analysis, The Royal Society of Chemistry, 3, pp. 317-321.
11 Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., and Tranvik, L. J. (2009). The Boundless Carbon Cycle, Nature Geoscience, 2, pp. 598-600.   DOI
12 Cho, Y. C. and Chung, S. W. (2007). Sediment Release Rate of Nutrients from Namyang Reservoir, Journal of Korean Society of Environmental Engineers, 29(12), pp. 1345-1352. [Korean Literature]
13 Choi, K. S., Kim, B. C., Kim, H. B., and Sa, S. H. (2000). Relationships between Organic Carbon and CODMn in a Deep Reservoir, Lake Soyang, Korea, Korean Journal of Limnology, 33(4), pp. 328-335.
14 Chung, S. W., Imberger, J., Hipsey, M. R., and Lee, H. S., (2014). The Influence of Physical and Physiological Processes on the Spatial Heterogeneity of a Microcystis Bloom in a Stratified Reservoir, Ecological Modelingl. 289, pp. 133-149.   DOI
15 Wetzel, R. G. (2001). Limnology, Lake and River Ecosystems, Academic Press, New York.
16 Tremblay, Varfalvy, L., Roehm, C., and Garneau, M. (2005). Greenhouse Gas Emissions: Fluxesand Processes, Hydroelectric Reservoirs and Natural Environments, Environmental Science Series, Springer, New York, pp. 732.
17 UNESCO. (2008). Assessment of the GHG Status of Freshwater Reservoirs.
18 Wanninkhof, R. and Knox, M. (1996). Chemical Enhancement of CO2 Exchange in Natural Waters, Limnology and Oceanography, 41(4), pp. 689-697.   DOI
19 Yu, S. J., Hwang, J. Y., Yoon, Y. S., and Han, E. J. (1999). Index of Organic Matter in Stream and Lake, 8(1), pp. 81-92. [Korean Literature]
20 Yu, S. J., Kim, C. S., Ha, S. R., Hwang, J. Y., and Chae, M. H. (2005). Analysis of Natural Organic Matter (NOM) Characteristics in the Geum River, Journal of Korean Society on Water Environment, 21(2), pp. 125-131. [Korean Literature]
21 Hanson, P. C., Pace, M. L., Carpenter, S. R., Cole, J. J., and Stanley, E. H. (2014). Intergrating Landscape Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of Lakes, Ecosystems, DOI: 10.1007/s10021-014-9826-9.   DOI
22 Chung, S. W., Lee, H. S., and Jung, Y. R. (2008). The Effect of Hydrodynamic Flow Regimes on the Algal Bloom in a Monomictic Reservoir, Water Science and Technology, 58(6), pp. 1291-1298, ISSN Print: 0273-1223.   DOI
23 Cole, J. J. and Prairie, Y. T. (2009). Dissolved CO2, Encyclopedia of Inland Waters, pp. 30-34.
24 Cole, J. J., Caraco, N. F., Kling, G. W., and Kratz, T. K. (1994). Carbon Dioxide Supersaturation in the Surface Waters of Lakes, Science, 265(9), pp. 1568-1570.   DOI
25 Delmas, R., Galy-Lacaux, C., and Richard, S. (2001). Emissions of Greenhouse Gases from the Tropical Hydroelectric Reservoir of Petit Saut (French Guiana) Compared with Emissions from Thermal Alternatives, Global Biogeochemical Cycles, 15, pp. 993-1003.   DOI
26 Guérin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., and Delmas, R. (2006). Methane and Carbon Dioxide Emissions from Tropical Reservoirs: Significance of Downstream Rivers, Geophysical Research Letters, 33, L21407, doi:10.1029/2006GL027929.   DOI
27 Huttunen, J. T., Väisänen, T. S., Heikkikinen, M., Hellsten, S., Nykänen, H., Nenonen, O., and Martikainen, P. J. (2002). Fluxes of CH4, CO2, and N2O in Hydroelectric Reservoirs Lokka and Porttipahta in the Northern Boreal Zone in Finland, Global Biogeochemical Cycles, 16, pp. 1-17.   DOI
28 Kim, J. M., Heo, S. N., Noh, H. R., Yang, H. J., and Han, M. S. (2003). Relationship between Limnological Characteristics and Algal Bloom in Lake-type and River-type Reservoirs, Korean Journal of Limnology, 36(2), pp. 124-138. [Korean Literature]
29 Kemenes, A., Forsberg, B. R., and Melack, J. M. (2007). Methane Release Below a Tropical Hydroelectric Dam, Geophysical Research Letters, 34, L12809, doi:10.1029/2007GL029479.   DOI
30 Kim, B., Choi, K., Kim, C., Lee, U., and Kim, Y. (2000). Effects of the Summer Monsoon on the Distribution and Loading of Organic Carbon in a Deep Reservoir, Lake Soyang, Korea, Environmental Research, 17, pp. 284-293. [Korean Literature]
31 Korea Rural Community Corporation (KRCC). (2002). The Final Report of Water Quality and Sediment Survey at Heung-bu Area during the Raining Event, Korea Rural Community Corporation. [Korean Literature]
32 K-water. (2002). The Study of Sediment Pollutant Decay and Release in Dam Reservoir, K-water. [Korean Literature]
33 K-water. (2006). The Report of Sedimentation Measuring at Daechung Reservoir, K-water. [Korean Literature]
34 K-water. (2007). Dam Operational Practices Handbook, K-water. [Korean Literature]
35 Lee, Y. S. (2005). Water Quality Effect of Sediment Release on Reservoir. Proceedings of the 2005 Spring Co-conference of the Korean Society on Environmental Engineers, pp. 1149-1152. [Korean Literature]
36 Louis, V. L. ST., Kelly, C. A., Duchemin, E., Rudd, J. W.. M., and Rosenberg, D. M. (2000). Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimation, BioScience, 50(9), pp. 766-775.   DOI