• Title/Summary/Keyword: variational model

Search Result 245, Processing Time 0.02 seconds

Data Assimilation of Aeolus/ALADIN Horizontal Line-Of-Sight Wind in the Korean Integrated Model Forecast System (KIM 예보시스템에서의 Aeolus/ALADIN 수평시선 바람 자료동화)

  • Lee, Sihye;Kwon, In-Hyuk;Kang, Jeon-Ho;Chun, Hyoung-Wook;Seol, Kyung-Hee;Jeong, Han-Byeol;Kim, Won-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.27-37
    • /
    • 2022
  • The Korean Integrated Model (KIM) forecast system was extended to assimilate Horizontal Line-Of-Sight (HLOS) wind observations from the Atmospheric Laser Doppler Instrument (ALADIN) on board the Atmospheric Dynamic Mission (ADM)-Aeolus satellite. Quality control procedures were developed to assess the HLOS wind data quality, and observation operators added to the KIM three-dimensional variational data assimilation system to support the new observed variables. In a global cycling experiment, assimilation of ALADIN observations led to reductions in average root-mean-square error of 2.1% and 1.3% for the zonal and meridional wind analyses when compared against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analyses. Even though the observable variable is wind, the assimilation of ALADIN observation had an overall positive impact on the analyses of other variables, such as temperature and specific humidity. As a result, the KIM 72-hour wind forecast fields were improved in the Southern Hemisphere poleward of 30 degrees.

Abnormal sonar signal detection using recurrent neural network and vector quantization (순환신경망과 벡터 양자화를 이용한 비정상 소나 신호 탐지)

  • Kibae Lee;Guhn Hyeok Ko;Chong Hyun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.500-510
    • /
    • 2023
  • Passive sonar signals mainly contain both normal and abnormal signals. The abnormal signals mixed with normal signals are primarily detected using an AutoEncoder (AE) that learns only normal signals. However, existing AEs may perform inaccurate detection by reconstructing distorted normal signals from mixed signal. To address these limitations, we propose an abnormal signal detection model based on a Recurrent Neural Network (RNN) and vector quantization. The proposed model generates a codebook representing the learned latent vectors and detects abnormal signals more accurately through the proposed search process of code vectors. In experiments using publicly available underwater acoustic data, the AE and Variational AutoEncoder (VAE) using the proposed method showed at least a 2.4 % improvement in the detection performance and at least a 9.2 % improvement in the extraction performance for abnormal signals than the existing models.

A SYSTEM DYNAMICS MODEL OF FOOD GRAIN PRODUCTION IN KOREA (양곡생산(糧穀生産)의 동적(動的) 모델에 관(關)한 연구(硏究))

  • Lee, Chong Ho
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.61-69
    • /
    • 1983
  • A system dynamic model was developed to predict food grain production under the dynamic consideration of the production circumstance and inputs such as farm population, investment on agriculture, arable land, extensive technology and weather. By using the model, the variation of the food grain production from 1978 to 2008 was examined. The results of the model output says it is desirable that the persistent and long-term program should be studied to get necessary food grain production under the variational inputs and circumstances.

  • PDF

Data Assimilation Effect of Mobile Rawinsonde Observation using Unified Model Observing System Experiment during the Summer Intensive Observation Period in 2013 (2013년 여름철 집중관측동안 통합모델 관측시스템실험을 이용한 이동형 레윈존데 관측의 자료동화 효과)

  • Lim, Yun-Kyu;Song, Sang-Keun;Han, Sang-Ok
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.215-224
    • /
    • 2014
  • Data assimilation effect of mobile rawinsonde observation was evaluated using Unified Model (UM) with a Three-Dimensional Variational (3DVAR) data assimilation system during the intensive observation program of 2013 summer season (rainy season: 20 June-7 July 2013, heavy rain period: 8 July-30 July 2013). The analysis was performed by two sets of simulation experiments: (1) ConTroL experiment (CTL) with observation data provided by Korea Meteorological Administration (KMA) and (2) Observing System Experiment (OSE) including both KMA and mobile rawinsonde observation data. In the model verification during the rainy season, there were no distinctive differences for 500 hPa geopotential height, 850 hPa air temperature, and 300 hPa wind speed between CTL and OSE simulation due to data limitation (0000 and 1200 UTC only) at stationary rawinsonde stations. In contrast, precipitation verification using the hourly accumulated precipitation data of Automatic Synoptic Observation System (ASOS) showed that Equivalent Threat Score (ETS) of the OSE was improved by about 2% compared with that of the CTL. For cases having a positive effect of the OSE simulation, ETS of the OSE showed a significantly higher improvement (up to 41%) than that of the CTL. This estimation thus suggests that the use of mobile rawinsonde observation data using UM 3DVAR could be reasonable enough to assess the improvement of prediction accuracy.

Li+ Extraction Reactions with Ion-exchange type Lithium Manganese Oxide and Their Electronic Structures (이온교환형 리튬망간산화물의 리튬이온 용출특성 및 전자상태)

  • Kim, Yang-Soo;Chung, Kang-Sup;Lee, Jae-Chun
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.860-864
    • /
    • 2002
  • $Li^{+}$ extraction reactions with ion-exchange type lithium manganese oxide in an aqueous phase were examined using chemical and x-ray diffraction (XRD) analysis. In the process of extraction reaction, the lithium manganese oxide showed a topotactic extraction of $Li^{+ }$ in the aqueous phase mainly through an ion-exchange mechanism, and the $Li^{+}$ extracted samples indicated a high selectivity and a large capacity for $Li^{+}$ . The electronic structures and chemical bonding properties were also studied using a discrete variational (DV)-X$\alpha$ molecular orbital method with cluster model of (Li$Mn_{12}$ $O_{40}$ )$^{27-}$ for tetrahedral sites and ($Li_{7}$ Mn $O_{38}$ )$^{3}$ for octahedral site in $Li_{1.33}$ $Mn_{1.67}$ / $O_{4}$ respectively. Li in the manganese oxides is highly ionized in both sites, but the net charge of Li was greater for tetrahedral sites than octahedral. These calculations suggest that the tetrahedral sites have higher $Li^{+}$ $H^{+}$ exchangeability than the octahedral sites, and are preferable for the selective adsorption for L $i^{+}$ ions.s.

Shape Design Sensitivity Analysis Using Isogeometric Approach (등기하 해석법을 이용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.339-345
    • /
    • 2007
  • In this paper, a variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions for response analysis are generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Furthermore, the solution space for the response analysis can be represented in terms of the same functions to represent the geometry, which enables to provide a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling and analyze arbitrarily shaped structures without re-meshing. In this paper, a continuum-based adjoint sensitivity analysis method using the isogeometric approach is extensively derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of geometry In the isogeometric analysis, however, the geometric properties are already embedded in the B-spline basis functions and control points so that it has potential capability to overcome the aforementioned difficulties. Through some numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

Vibration and Stability Analysis of a Multi-stepped Shaft System of Turbo Compressor (터보 압축기 다단 회전축계의 진동 및 안정성 연구)

  • Seo, Jung-Seok;Kang, Sung-Hwan;Park, Sang-Yoon;An, Chang-Gi;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.583-591
    • /
    • 2014
  • The mathematical modeling on the free vibration and stability of a multi-stepped shaft of turbo compressor is performed in this study. The multi-stepped shaft is modeled as a non-uniform Timoshenko beam supported by anisotropic bearings. It is assumed that the shaft is spinning with constant speed about its longitudinal axis and subjected to a conservative axial force induced by front and rear impellers attached to the shaft. The structural model incorporates non-classical features such as transverse shear and rotary inertia. A structural coupling between vertical and lateral motions is induced by Coriolis acceleration terms. The governing equations are derived via Hamilton's variational principle and the equations are transformed to the standard form of an eigenvalue problem. The implications of combined gyroscopic effect, conservative axial force, bearing stiffness and damping are revealed and a number of pertinent conclusions are outlined. In this study analytical results are compared with those from ANSYS finite element analysis and experimental modal testing.

A Technique for Fixing Size of Reference Signature Data in Structural Signature Verificaiton (구조적 서명 검증에서의 참조 서명의 데이터 크기 고정화 기법)

  • Lee, Lee-Sub;Kim, Seong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1345-1352
    • /
    • 2010
  • The structural approach in the signature verification, representing a signature as a structural form of local primitives, shows an excellent performance since it counts in the local characteristics such as local variation, stroke complexity, and etc. However, this method has a problem of template data sizing which can not fix the number of subpatterns comprising a signature. In this paper, we proposed a new algorithm to reduce the signature data into a fixed size by selecting a fixed number of subpatterns which is considered as important parts. As a result, it shows more excellent performance when the fixed sized sub-patterns is applied with local weights extracted from variational characteristics and complexities in local part. And the number of subpatterns representing a signature reference model can be fixed under a certain number of segments determined appropriately.

Enhancement of Evoked Potential Waveform using Delay-compensated Wiener Filtering (지연보상 위너 필터링에 의한 유발전위 파형개선)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.261-269
    • /
    • 2013
  • In this paper, the evoked potential(EP) was represented by additive delay model to comply with the variational noisy response of stimulus-event synchronization. The hybrid method of delay compensated-Wiener filtered-ensemble averaging(DWEA) was proposed to enhance the EP signal distortion occurred during averaging procedure due to synchronization timing mismatch. The performance of DWEA has been tested by surrogated simulation, which is composed of synthesized arbitrary delay and arbitrary level of added noise. The performance of DWEA is better than those of Wiener filtered-ensemble averaging and of conventional ensemble averaging. DWEA is endurable up to added noise gain of 7 for 10 % mean square error limit. Throughout the experimentation observation, it has been demonstrated that DWEA can be applied to enhance the evoked potential having the synchronization mismatch with added noise.

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.