Browse > Article
http://dx.doi.org/10.14191/Atmos.2022.32.1.027

Data Assimilation of Aeolus/ALADIN Horizontal Line-Of-Sight Wind in the Korean Integrated Model Forecast System  

Lee, Sihye (Korea Institute of Atmospheric Prediction Systems)
Kwon, In-Hyuk (Korea Institute of Atmospheric Prediction Systems)
Kang, Jeon-Ho (Korea Institute of Atmospheric Prediction Systems)
Chun, Hyoung-Wook (Numerical Modeling Center, Korea Meteorological Administration)
Seol, Kyung-Hee (Korea Institute of Atmospheric Prediction Systems)
Jeong, Han-Byeol (Korea Institute of Atmospheric Prediction Systems)
Kim, Won-Ho (Korea Institute of Atmospheric Prediction Systems)
Publication Information
Atmosphere / v.32, no.1, 2022 , pp. 27-37 More about this Journal
Abstract
The Korean Integrated Model (KIM) forecast system was extended to assimilate Horizontal Line-Of-Sight (HLOS) wind observations from the Atmospheric Laser Doppler Instrument (ALADIN) on board the Atmospheric Dynamic Mission (ADM)-Aeolus satellite. Quality control procedures were developed to assess the HLOS wind data quality, and observation operators added to the KIM three-dimensional variational data assimilation system to support the new observed variables. In a global cycling experiment, assimilation of ALADIN observations led to reductions in average root-mean-square error of 2.1% and 1.3% for the zonal and meridional wind analyses when compared against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analyses. Even though the observable variable is wind, the assimilation of ALADIN observation had an overall positive impact on the analyses of other variables, such as temperature and specific humidity. As a result, the KIM 72-hour wind forecast fields were improved in the Southern Hemisphere poleward of 30 degrees.
Keywords
KIM; ADM-Aeolus; ALADIN; HLOS wind; Data assimilation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baars, H., A. Herzog, B. Heese, K. Ohneiser, K. Hanbuch, J. Hofer, Z. Yin, R. Engelmann, and U. Wandinger, 2020: Validation of Aeolus wind products above the Atlantic Ocean. Atmos. Meas. Tech., 13, 6007-6024, doi:10.5194/amt-13-6007-2020.   DOI
2 Choi, S. J., and S. Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.   DOI
3 Hagelin, S., R. Azad, M. Lindskog, H. Schyberg, and H. Kornich, 2021: Evaluating the use of Aeolus satellite observations in the regional numerical weather prediction (NWP) model Harmonie-Arome. Atmos. Meas. Tech., 14, 5925-5938, doi:10.5194/amt-14-5925-2021.   DOI
4 Haiden, T., M. Janousek, J. Bidlot, L. Ferranti, F. Prates, F. Vitart, P. Bauer, and D. S. Richardson, 2016: Evaluation of ECMWF forecasts, including the 2016 resolution upgrade. ECMWF Tech. Memo. No.792, 53 pp, doi:10.21957/vltarm3ql.   DOI
5 Reitebuch, O., D. Huber, and I. Nikolaus, 2014: ADM-Aeolus Algorithm Theoretical Basis Document ATBD Level 1B Products. AE-PR-DLR-L1B-001, 117 pp [Available online at https://earth.esa.int/pi/esa?type=file&table=aotarget&cmd=image&alias=ADM_Aeolus_L1B_Algorithm_TBD].
6 Lee, S., and H.-J. Song, 2018: Impacts of LEOGEO Atmospheric Motion Vectors on East Asian weather forecasts. Q. J. R. Meteorol. Soc., 144, 1914-1925, doi:10.1002/qj.3392.   DOI
7 Marseille, G. J., and A. Stoffelen, 2003: Simulation of wind profiles from a space-borne doppler wind lidar. Q. J. R. Meteorol. Soc., 129, 3079-3098.   DOI
8 Martin, A., M. Weissmann, O. Reitebuch, M. Rennie, A. Geiss, and A. Cress, 2021: Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents. Atmos. Meas. Tech., 14, 2167-2183, doi:10.5194/amt-14-2167-2021.   DOI
9 Rennie, M. P., L. Isaksen, F. Weiler, J. de Kloe, T. Kanitz, and O. Reitebuch, 2021: The impact of Aeolus wind retrievals on ECMWF global weather forecasts. Q. J. R. Meteorol. Soc., 147, 3555-3586, doi:10.1002/qj.4142.   DOI
10 Stoffelen, A., and Coauthors, 2005: The Atmospheric Dynamics Mission for global wind field measurement. Bull. Amer. Meteor. Soc., 86, 73-87.   DOI
11 Lee, E.-H., J. Lee, and I.-J. Choi, 2016: Verification of the medium-range forecasts of KIAPS integrated model. Abstract, EGU General Assembly 2016, Vienna, Austria, EPSC2016-11706 [Available online at https://ui.adsabs.harvard.edu/abs/2016EGUGA..1811706L/abstract].
12 Durand, Y., E. Chinal, M. Endemann, R. Meynart, O. Reitebuch, and R. Treichel, 2006: ALADIN airborne demonstrator: a Doppler Wind lidar to prepare ESA's ADM-Aeolus Explorer mission. Proc. SPIE 6296, Earth Observing Systems XI, 62961D, doi:10.1117/12.680958.   DOI
13 Jarque, C. M., and A. K. Bera, 1987: A test for normality of observations and regression residuals. Int. Stat. Rev., 55, 163-172.   DOI
14 Song, H.-J., J. Kwun, I.-H. Kwon, J.-H. Ha, J.-H. Kang, S. Lee, H.-W. Chun, and S. Lim, 2017: The impact of the nonlinear balance equation on a 3D-Var cycle during an Australian-winter month as compared with the regressed wind-mass balance. Q. J. R. Meteorol. Soc., 143, 2036-2049, doi:10.1002/qj.3065.   DOI
15 Kang, J.-H., and Coauthors, 2018: Development of an observation processing package for data assimilation in KIAPS. Asia-Pac. J. Atmos. Sci., 54, 303-318, doi:10.1007/s13143-018-0030-2.   DOI
16 Rennie, M. P., and L. Isaksen, 2020: The NWP impact of Aeolus Level-2B Winds at ECMWF. ECMWF Tech. Memo. No. 864, 110 pp.
17 Song, H.-J., and I.-H. Kwon, 2015: Spectral transformation using a cubed-sphere grid for a three-dimensional variational data assimilation system. Mon. Wea. Rev., 143, 2581-2599, doi:10.1175/MWR-D-14-00089.1.   DOI
18 Sung, K., H.-J. Song, and I.-H. Kwon, 2020: A local unscented transform Kalman filter for nonlinear systems. Mon. Wea. Rev., 148, 3243-3266, doi:10.1175/MWR-D-19-0228.1.   DOI