• Title/Summary/Keyword: variance errors.

Search Result 237, Processing Time 0.029 seconds

Sample Design in Korea Housing Survey (주거 실태 및 수요조사 표본설계)

  • Byun, Jong-Seok;Choi, Jae-Hyuk
    • Survey Research
    • /
    • v.11 no.1
    • /
    • pp.123-144
    • /
    • 2010
  • In new sample design for Korea Housing Survey to research about housing policy, total strata are forty five because individual results of sixteen regions are estimated. The sample size is determined by sample errors of several variables which are the living area, family income, householder income, and living expenses. The sample size of each region is determined by relative standard error of existing result, and the strata sample size is to use the square root proportion allocation. Enumeration districts are sampled by the probability proportion to size systematic sampling in proportion to the enumeration district size, and the systemic sampling to use assortment characteristics. We considered a new apartment complex because of variation reflections which are rebuilder and redevelopment of houses. To get estimators of mean and variance, we used the design weighting, non-response adjusting, and post-stratification. In order to consider estimation efficiency, we calculate the design effect using estimators of variance.

  • PDF

Alignment and Navigation of Inertial Navigation and Guidance Unit using Inertial Explorer Software (Inertial Explorer 소프트웨어를 이용한 관성항법유도장치 정렬 및 항법계산)

  • Kim, Jeong-Yong;Oh, Jun-Seok;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.50-59
    • /
    • 2010
  • In this paper, the alignment and navigation results by INGU(Inertial Navigation and Guidance Unit) onboard software and by Inertial Explorer which is a post-processing software specialized for IMU(Inertial Measurement Unit) are compared for identification of inertial sensor error models and estimation of alignment and navigation errors for KSLV-I INGU. For verification of the IMU error estimated by Kalman Filter of Inertial Explorer, the covariance parameters of inertial sensor error model state are identified by using stochastic error model of inertial sensors estimated by Allan variance and the alignment and navigation test with static condition and the land navigation test with dynamic condition are carried out. The validity of inertial sensor model for KSLV-I INGU is verified by comparison the alignment and navigation results of INGU on-board software and Inertial Explorer.

Analysis of the Influence of Atmospheric Turbulence on the Ground Calibration of a Star Sensor

  • Xian Ren;Lingyun Wang;Guangxi Li;Bo Cui
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.38-44
    • /
    • 2024
  • Under the influence of atmospheric turbulence, a star's point image will shake back and forth erratically, and after exposure the originally small star point will spread into a huge spot, which will affect the ground calibration of the star sensor. To analyze the impact of atmospheric turbulence on the positioning accuracy of the star's center of mass, this paper simulates the atmospheric turbulence phase screen using a method based on a sparse spectrum. It is added to the static-star-simulation device to study the transmission characteristics of atmospheric turbulence in star-point simulation, and to analyze the changes in star points under different atmospheric refractive-index structural constants. The simulation results show that the structure function of the atmospheric turbulence phase screen simulated by the sparse spectral method has an average error of 6.8% compared to the theoretical value, while the classical Fourier-transform method can have an error of up to 23% at low frequencies. By including a simulation in which the phase screen would cause errors in the center-of-mass position of the star point, 100 consecutive images are selected and the average drift variance is obtained for each turbulence scenario; The stronger the turbulence, the larger the drift variance. This study can provide a basis for subsequent improvement of the ground-calibration accuracy of a star sensitizer, and for analyzing and evaluating the effect of atmospheric turbulence on the beam.

Utilization of Skewness for Statistical Quality Control (통계적 품질관리를 위한 왜도의 활용)

  • Kim, Hoontae;Lim, Sunguk
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.663-675
    • /
    • 2023
  • Purpose: Skewness is an indicator used to measure the asymmetry of data distribution. In the past, product quality was judged only by mean and variance, but in modern management and manufacturing environments, various factors and volatility must be considered. Therefore, skewness helps accurately understand the shape of data distribution and identify outliers or problems, and skewness can be utilized from this new perspective. Therefore, we would like to propose a statistical quality control method using skewness. Methods: In order to generate data with the same mean and variance but different skewness, data was generated using normal distribution and gamma distribution. Using Minitab 18, we created 20 sets of 1,000 random data of normal distribution and gamma distribution. Using this data, it was proven that the process state can be sensitively identified by using skewness. Results: As a result of the analysis of this study, if the skewness is within ± 0.2, there is no difference in judgment from management based on the probability of errors that can be made in the management state as discussed in quality control. However, if the skewness exceeds ±0.2, the control chart considering only the standard deviation determines that it is in control, but it can be seen that the data is out of control. Conclusion: By using skewness in process management, the ability to evaluate data quality is improved and the ability to detect abnormal signals is excellent. By using this, process improvement and process non-sub-stitutability issues can be quickly identified and improved.

Asynchronous and Adaptive Massage Passing Scheme for Wireless Sensor Networks (무선 센서 네트워크를 위한 비동기 적응형 메시지 전달 기법)

  • Jeong, Jong-Kyun;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.196-201
    • /
    • 2013
  • In this paper, we propose an asynchronous and adaptive message passing scheme based on S-MAC for handling with the problem on energy efficiency in wireless sensor networks. The proposed scheme consists of a policy that differentiate transmission errors caused by packet collision or radio interference from congestion errors caused by buffer overflow and a method that adaptively controls the size of a fragment according to the variance of traffic loads. Especially, it presents a method that highly reduce the energy consumption by keeping the size of fragment not being excessively smaller than the one that may result in rapid increment of the total transfer time. Finally, with the simulation results we show that network throughput and delay are improved by using the proposed message passing scheme.

A Comparative Study of Conceptual Models for Rainfall-Runoff Relationship in Small to Medium Sized Watershed -Application to Wi Stream Basin- (중수 하천유역에서 강우-유출관계의개념적 모형 비교연구 -위천유역을 중심으로-)

  • Lee, Jeong-Sik;Lee, Jae-Jun;Son, Gwang-Ik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.279-291
    • /
    • 1997
  • This study is to evaluate the accuracy and practicality of the existing four conceptual models, two linear models of Clark and Nash model and two nonlinear models of Laruenson and WBN model, and to select an appropriate model to simulate the rainfall-runoff process in a given catchment. The variability of parameters for linear models is generally larger than that of nonlinear models. The errors in peak discharge are similar among the four conceptual models buy the errors in time to peak are quite different. Nonlinear models produce better results for time distribution than linear models. A comparison of the conceptual models to predict overall hydrograph using Friedman two-way analysis of variance by rank test indicates that nonlinear models are slightly better than linear models.

  • PDF

Analysis of Variables and Errors of the Combinatorial Problem (순열 조합 문장제의 문제 변인과 오류 분석)

  • Lee, Ji-Hyun;Lee, Jung-Yun;Choi, Young-Gi
    • School Mathematics
    • /
    • v.7 no.2
    • /
    • pp.123-137
    • /
    • 2005
  • Elementary combinatorial problem may be classified into three different combinatorial models(selection, distribution, partition). The main goal of this research is to determine the effect of type of combinatorial operation and implicit combinatorial model on problem difficulty. We also classified errors in the understanding combinatorial problem into error of order, repetition, permutation with repetition, confusing the type of object and cell, partition. The analysis of variance of answers from 339 students showed the influence of the implicit combinatorial model and types of combinatorial operations. As a result of clinical interviews, we particularly noticed that some students were not able to transfer the definition of combinatorial operation when changing the problem to a different combinatorial model. Moreover, we have analysed textbooks, and we have found that the exercises in these textbooks don't have various types of problems. Therefore when organizing the teaching , it is necessary to pose various types of problems and to emphasize the transition of combinatorial problem into the different models.

  • PDF

Comparison of Composite Methods of Satellite Chlorophyll-a Concentration Data in the East Sea

  • Park, Kyung-Ae;Park, Ji-Eun;Lee, Min-Sun;Kang, Chang-Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.635-651
    • /
    • 2012
  • To produce a level-3 monthly composite image from daily level-2 Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll-a concentration data set in the East Sea, we applied four average methods such as the simple average method, the geometric mean method, the maximum likelihood average method, and the weighted averaging method. Prior to performing each averaging method, we classified all pixels into normal pixels and abnormal speckles with anomalously high chlorophyll-a concentrations to eliminate speckles from the following procedure for composite methods. As a result, all composite maps did not contain the erratic effect of speckles. The geometric mean method tended to underestimate chlorophyll-a concentration values all the time as compared with other methods. The weighted averaging method was quite similar to the simple average method, however, it had a tendency to be overestimated at high-value range of chlorophyll-a concentration. Maximum likelihood method was almost similar to the simple average method by demonstrating small variance and high correlation (r=0.9962) of the differences between the two. However, it still had the disadvantage that it was very sensitive in the presence of speckles within a bin. The geometric mean was most significantly deviated from the remaining methods regardless of the magnitude of chlorophyll-a concentration values. Its bias error tended to be large when the standard deviation within a bin increased with less uniformity. It was more biased when data uniformity became small. All the methods exhibited large errors as chlorophyll-a concentration values dominantly scatter in terms of time and space. This study emphasizes the importance of the speckle removal process and proper selection of average methods to reduce composite errors for diverse scientific applications of satellite-derived chlorophyll-a concentration data.

The Measurement Error owing to Leakage of Gaugeline in Orifice Flowmeter (오리피스 유량계에서 게이지라인 누설에 의한 계량오차)

  • Lee, Cheol-Gu;Ha, Young-Chul;Her, Jae-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.143-148
    • /
    • 2003
  • This study was experimentally performed in order to estimate the errors due to the leakage of transmitter gaugelines in the orifice flow meter for natural gas. It would be a serious problem in safety if a large quantity of leak was occurred at the tubes or fittings like valve. But in most cases the safety problems might be rarely happened because the gas leak detectors could be operated in advance and the various kinds of inspection would be also fulfilled periodically. If the leakage was occurred continuously with an undetectable amount at the gaugelines for measuring the pressure or the differential pressure(DP), the amount of leakage might be an error or an unaccounted flow(UAE). In addition if the measuring value of pressure or DP were affected by the leakage, it might also be a measurement error. The experiments were performed to estimate the amount of leakage and to check the DP changes if it exited. First, through the measurement of the air pressure changes in the airtight container connected to a transmitter with gaugelines as the time passed, the amount of leakage causing from the fittings of gaugelines was roughly estimated. As changing the leak position of the gaugeline, the leak was intentionally made to break out. The variance of DP was checked as controlling the extent of leakage and compared to no leak conditions. Consequently, under the normal maintenance conditions, the result represented that the amount of leakage causing from the gaugelines was insignificant and also the DP changes on leakage conditions were too small to cause the errors of measurements.

  • PDF

Edge Computing-based Differential Positioning Method for BeiDou Navigation Satellite System

  • Wang, Lina;Li, Linlin;Qiu, Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.69-85
    • /
    • 2019
  • BeiDou navigation satellite system (BDS) is one of the four main types of global navigation satellite systems. The current system has been widely used by the military and by the aerospace, transportation, and marine fields, among others. However, challenges still remain in the BeiDou system, which requires rapid responses for delay-sensitive devices. A differential positioning algorithm called the data center-based differential positioning (DCDP) method is widely used to avoid the influence of errors. In this method, the positioning information of multiple base stations is uploaded to the data center, and the positioning errors are calculated uniformly by the data center based on the minimum variance or a weighted average algorithm. However, the DCDP method has high delay and overload risk. To solve these problems, this paper introduces edge computing to relieve pressure on the data center. Instead of transmitting the positioning information to the data center, a novel method called edge computing-based differential positioning (ECDP) chooses the nearest reference station to perform edge computing and transmits the difference value to the mobile receiver directly. Simulation results and experiments demonstrate that the performance of the ECDP outperforms that of the DCDP method. The delay of the ECDP method is about 500ms less than that of the DCDP method. Moreover, in the range of allowable burst error, the median of the positioning accuracy of the ECDP method is 0.7923m while that of the DCDP method is 0.8028m.