• Title/Summary/Keyword: variable nonlocal

Search Result 50, Processing Time 0.022 seconds

Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates

  • Alazwari, Mashhour A.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.117-137
    • /
    • 2022
  • Effect of thickness stretching on free vibration, bending and buckling behavior of carbon nanotubes reinforced composite (CNTRC) laminated nanoplates rested on new variable elastic foundation is investigated in this paper using a developed four-unknown quasi-3D higher-order shear deformation theory (HSDT). The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Two new forms of CNTs reinforcement distribution are proposed and analyzed based on cosine functions. By considering the higher-order nonlocal strain gradient theory, microstructure and length scale influences are included. Variational method is developed to derive the governing equation and Galerkin method is employed to derive an analytical solution of governing equilibrium equations. Two-dimensional variable Winkler elastic foundation is suggested in this study for the first time. A parametric study is executed to determine the impact of the reinforcement patterns, nonlocal parameter, length scale parameter, side-t-thickness ratio and aspect ratio, elastic foundation and various boundary conditions on bending, buckling and free vibration responses of the CNTRC plate.

A review on dynamic characteristics of nonlocal porous FG nanobeams under moving loads

  • Abdulaziz Saud Khider;Ali Aalsaud;Nadhim M. Faleh;Abeer K. Abd;Mamoon A.A. Al-Jaafari;Raad M. Fenjan
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • This research presents dynamical reaction investigation of pore-dependent and nano-thickness beams having functional gradation (FG) constituents exposed to a movable particle. The nano-thickness beam formulation has been appointed with the benefits of refined high orders beam paradigm and nonlocal strain gradient theory (NSGT) comprising two scale moduli entitled nonlocality and strains gradient modulus. The graded pore-dependent constituents have been designed through pore factor based power-law relations comprising pore volumes pursuant to even or uneven pore scattering. Therewith, variable scale modulus has been thought-out until process a more accurate designing of scale effects on graded nano-thickness beams. The motion equations have been appointed to be solved via Ritz method with the benefits of Chebyshev polynomials in cosine form. Also, Laplace transform techniques help Ritz-Chebyshev method to obtain the dynamical response in time domain. All factors such as particle speed, pores and variable scale modulus affect the dynamical response.

Nonlinear thermal vibration of fluid infiltrated magneto piezo electric variable nonlocal FG nanobeam with voids

  • L. Rubine;R. Selvamani;F. Ebrahimi
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.337-357
    • /
    • 2024
  • This paper studies, the analysis of nonlinear thermal vibration of fluid-infiltrated FG nanobeam with voids. The effect of nonlinear thermal in a FG ceramic-metal nanobeam is determined using Murnaghan's model. Here the influence of fluids in the pores is investigated using the Skempton coefficient. Hamilton's principle is used to find the equation of motion of functionally graded nanobeam with the effect of refined higher-order state space strain gradient theory (SSSGT). Numerical solutions of the FG nanobeam are employed using Navier's solution. These solutions are validated against the impact of various parameters, including imperfection ratio, fluid viscosity, fluid velocity, amplitude, and piezoelectric strain, on the behavior of the fluid-infiltrated porous FG nanobeam.

On buckling analysis of laminated composite plates using a nonlocal refined four-variable model

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.173-187
    • /
    • 2019
  • This study is concerned with the stability of laminated composite plates modelled using Eringen's nonlocal differential model (ENDM) and a novel refined-hyperbolic-shear-deformable plate theory. The plate is assumed to be lying on the Pasternak elastic foundation and is under the influence of an in-plane magnetic field. The governing equations and boundary conditions are obtained through Hamilton's principle. An analytical approach considering Navier series is used to fine the critical bucking load. After verifying with existing results for the reduced cases, the present model is then used to study buckling of the laminated composite plate. Numerical results demonstrate clearly for the first time the roles of size effects, magnetic field, foundation parameters, moduli ratio, geometry, lay-up numbers and sequences, fiber orientations, and boundary conditions. These results could be useful for designing better composites and can further serve as benchmarks for future studies on the laminated composite plates.

Semi-numerical simulation for effects of different loadings on vibration behavior of 2D systems

  • Rao, Li;Lin, Chao;Zhang, Chenglin
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.259-266
    • /
    • 2022
  • Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), an investigation on the free vibrations of 2D plate systems with nano-dimensions has been provided taking into account the effects of different mechanical loadings. In order to capture different mechanical loadings, a general form of variable compressive load applied in the axial direction of the plate system has been introduced. The studied plate has been constructed from two types of particles which results in graded material properties and nanoscale pores. The established formulation for the plate is in the context of a novel shear deformable model and the equations have been solved via a semi-numerical trend. Presented results indicate the prominence of material composition, nonlocal coefficient, strain gradient coefficient and boundary conditions on vibrational frequencies of nano-size plate.

Determination of Unknown Time-Dependent Heat Source in Inverse Problems under Nonlocal Boundary Conditions by Finite Integration Method

  • Areena Hazanee;Nifatamah Makaje
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.353-369
    • /
    • 2024
  • In this study, we investigate the unknown time-dependent heat source function in inverse problems. We consider three general nonlocal conditions; two classical boundary conditions and one nonlocal over-determination, condition, these genereate six different cases. The finite integration method (FIM), based on numerical integration, has been adapted to solve PDEs, and we use it to discretize the spatial domain; we use backward differences for the time variable. Since the inverse problem is ill-posed with instability, we apply regularization to reduce the instability. We use the first-order Tikhonov's regularization together with the minimization process to solve the inverse source problem. Test examples in all six cases are presented in order to illustrate the accuracy and stability of the numerical solutions.

A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium

  • Yazid, Miloud;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • This work presents the buckling investigation of embedded orthotropic nanoplates such as graphene by employing a new refined plate theory and nonlocal small-scale effects. The elastic foundation is modeled as two-parameter Pasternak foundation. The proposed two-variable refined plate theory takes account of transverse shear influences and parabolic variation of the transverse shear strains within the thickness of the plate by introducing undetermined integral terms, hence it is unnecessary to use shear correction factors. Nonlocal governing equations for the single layered graphene sheet are obtained from the principle of virtual displacements. The proposed theory is compared with other plate theories. Analytical solutions for buckling loads are obtained for single-layered graphene sheets with isotropic and orthotropic properties. The results presented in this study may provide useful guidance for design of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.

Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter

  • Houari, Mohammed Sid Ahmed;Bessaim, Aicha;Bernard, Fabrice;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.13-24
    • /
    • 2018
  • A size-dependent novel hyperbolic shear deformation theory of simply supported functionally graded beams is presented in the frame work of the non-local strain gradient theory, in which the stress accounts for only the nonlocal strain gradients stress field. The thickness stretching effect (${\varepsilon}_z{\neq}0$) is also considered here. Elastic coefficients and length scale parameter are assumed to vary in the thickness direction of functionally graded beams according to power-law form. The governing equations are derived using the Hamilton principle. The closed-form solutions for exact critical buckling loads of nonlocal strain gradient functionally graded beams are obtained using Navier's method. The derived results are compared with those of strain gradient theory.

Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects

  • Huang, Xiaoping;Shan, Huafeng;Chu, Weishen;Chen, Yongji
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.101-115
    • /
    • 2022
  • Some researchers pointed out that the nonlocal cantilever models do not predict the dynamic softening behavior for nanostructures (including nanobeams) with clamped-free (CF) ends. In contrast, some indicate that the nonlocal cantilever models can capture the stiffness softening characteristics. There are substantial differences on this issue between them. The vibration analysis of porosity-dependent functionally graded nanoscale tubes with variable boundary conditions is investigated in this study. Using a modified power-law model, the tube's porosity-dependent material coefficients are graded in the radial direction. The theory of nonlocal strain gradients is used. Hamilton's principle is used to derive the size-dependent governing equations for simply-supported (S), clamped (C) and clamped-simply supported (CS). Following the solution of these equations by the extended differential quadrature technique, the effect of various factors on vibration issues was investigated further. It can be shown that these factors have a considerable effect on the vibration characteristics. It also can be found that our numerical results can capture the unexpected softening phenomena for cantilever tubes.

Proposing a dynamic stiffness method for the free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Mohammad Gholami;Mojtaba Gorji Azandariani;Ahmed Najat Ahmed;Hamid Abdolmaleki
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • This paper studies the free vibration behavior of bi-dimensional functionally graded (BFG) nanobeams subjected to arbitrary boundary conditions. According to Eringen's nonlocal theory and Hamilton's principle, the underlying equations of motion have been obtained for BFG nanobeams. Moreover, the variable substitution method is utilized to establish the structure's state-space differential equations, followed by forming the dynamic stiffness matrix based on state-space differential equations. In order to compute the natural frequencies, the current study utilizes the Wittrick-Williams algorithm as a solution technique. Moreover, the nonlinear vibration frequencies calculated by employing the proposed method are compared to the frequencies obtained in previous studies to evaluate the proposed method's performance. Some illustrative numerical examples are also given in order to study the impacts of the nonlocal parameters, material property gradient indices, nanobeam length, and boundary conditions on the BFG nanobeam's frequency. It is found that reducing the nonlocal parameter will usually result in increased vibration frequencies.