• Title/Summary/Keyword: variable inductor

Search Result 57, Processing Time 0.025 seconds

Eddy Current System For Coating Thickness Measurement

  • Rerkratn, Apinai;Pulkham, Jirayut;Chitsakul, Kitiphol;Sangworasil, Manas;Keawpoonsuk, Anucha;Songsataya, Kiettiwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1907-1910
    • /
    • 2005
  • Coating thickness is an important variable that plays a role in product quality, process control, and cost control. Measurement of film thickness can be done with many different instruments. In this paper, we introduce the new eddy current system for measure the thickness of nonconductive coatings on nonferrous metal substrates. The experimental results are shown that the proposed system is able to measure thickness of plastic film coating on aluminum plates in the range of 0 to 1000 microns with satisfy sensitivities, linearity, resolution and stability of the system.

  • PDF

A Diode Bridge-type ZVT Inverter for Induction Motor Drive Application (유도 전동기 구동용 다이오드 브릿지-타입 ZVT 인버터)

  • 이성룡;고성훈;권순신;송인석
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.295-298
    • /
    • 1999
  • In this paper, the diode bridge-type ZVT(Zero-Voltage Transition) inverter is proposed. It consists of one auxiliary switch, three resonant inductors and six blocking diodes. So, the advantage of the proposed topology is the reduction of the auxiliary switch. The topology of the proposed ZVT inverter is analyzed with a description of the control conditions based on the load current. Therefore, this paper two control algorithms were discussed. A variable resonant pattern control algorithm by using load current feedback and a resonant period control algorithm by using resonant inductor current feedback is proposed in order to achieve the ZVT switching condition in full control range and the reducing current spike main switches cause by reverse recovery problem.

  • PDF

The Design of Lumped Constant Circuit for the Simulation of A Real 22.9 kV-y Distribution Line (22.9 kV-y 실긍장 배전선로 모의를 위한 집중정수회로의 설계)

  • Yun, Chul-Ho;Jeong, Yeong-Ho;Han, Yong-Huei
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1186-1188
    • /
    • 1999
  • When we perform the test related to the power distribution system such as artificial fault test, protective coordination test, distribution automation test in short length test line, Lumped Constant Circuit, a kind of variable impedance, should be attached to the test line in order to make it equivalent to a real line in length electrically. In this paper we designed the positive sequence and zero sequence Lumped Constant Circuit with optimized inductor and resister for the modification of long, 16km, distribution line, when they are attached to the short, 4km, distribution test line.

  • PDF

Characteristic analysis of variable speed eddy current coupling (가변속 와전류 커플링의 특성해석)

  • Jang, S.M.;Cho, S.K.;Lee, S.H.;Cho, H.W.;Lee, M.M.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.112-114
    • /
    • 2002
  • Coupling drives are shown to be appliacable to a wide range of control variables. This paper develops three dimensional theory of the eddy current coupling. It compares experimental results obtained on 5-Hp inductor type eddy current coupling with the theoretical computations. The flux density distributions are also presented using 3-D Finite element analysis.

  • PDF

Design of Group Delay Time Controller Based on a Reflective Parallel Resonator

  • Chaudhary, Girdhari;Choi, Heung-Jae;Jeong, Yong-Chae;Lim, Jong-Sik;Kim, Chul-Dong
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.210-215
    • /
    • 2012
  • In this paper, a group delay time controller (GDTC) is proposed based on a reflection topology employing a parallel resonator as the reflection termination. The design equations of the proposed GDTC have been derived and validated by simulation and experimental results. The group delay time can be varied by varying the capacitance and inductance at an operating frequency. To show the validity of the proposed circuit, an experiment was performed for a wideband code division multiple access downlink band operating at 2.11 GHz to 2.17 GHz. According to the experiment, a group delay time variation of $3{\pm}0.17$ ns over bandwidth of 60 MHz with excellent flatness is obtained.

DSP Based Control of Interleaved Boost Converter

  • Sudhakarababu C.;Veerachary Mummadi
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.180-189
    • /
    • 2005
  • In this paper a DSP based control scheme for the interleaved boost converter is presented. The mathematical model for the interleaved boost converter operating in a continuous inductor current mode is developed. A state-space averaging technique is used for modeling the converter system. A fixed frequency sliding mode controller is designed to ensure current distribution between the two converter modules and to achieve the load voltage regulation simultaneously. Necessary and sufficient conditions, using variable structure theory, are derived for the sliding mode to exist. The range of sliding mode controller coefficients is also determined. The designed controller capability, load distribution among the individual boost cells and load voltage regulation against source and load disturbances, are demonstrated through PSIM simulation results. A real-time controller based on ADMC401 DSP is developed. Experimental results are provided to validate the proposed control scheme.

A study of power filter for conversion of 3 phase PWM waveform to grid power line (전력용 3상 PWM 파형의 상용전원 변환용 Filter 연구)

  • Yea, Hwan-Je;Sea, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1016-1019
    • /
    • 1993
  • A low-pass L-C filter has been adopted for conversion of frequency variable 3 phase PWM waveform to a grid power line and it is used for attenuation of harmonics in the VSI PWM Inverter. A optimum design of the L, C parameters was derived. The result of the study show that the inductor L seems to have a certain air gap for linear I-V characteristics and the resonant frequency of the filter must be set below the 5th harmonics of the grid power line. Further, the voltage drop in L must be within a adequate limit compared to grid power voltage.

  • PDF

Design of the High Efficiency Bidirectional Converter for DC Distributed Power System (직류 배전 시스템을 위한 고효율 양방향 컨버터의 설계)

  • Tran, Duc-Hung;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.5-6
    • /
    • 2016
  • This paper introduces a high efficiency bidirectional resonant converter using an additional LC auxiliary circuit for dcdistribution applications. The LC auxiliary circuit operates as a variable inductor and the additional LC circuit helps to increase the effective magnetizing inductance, thereby reducing the turn-off and primary circulating current. A 5 kW bidirectional converter for dc-distribution system is implemented to verify the validity of the proposed method. The experimental results show the high efficiency characteristics of the proposed converter over the wide range of load in both direction of power flow. The maximum efficiency of the proposed system was 98.1 % at 3 kW.

  • PDF

Design of GaAs FET Linearizer with Variable Source Inductance (가변 소스 인덕터를 갖는 GaAs FET 선형화기 설계)

  • An, Jeong-Sig;Lee, Ki-Hong;Kang, Jeong-Jin;Yoo, Jae-Moon;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.221-225
    • /
    • 1999
  • In this paper, a new type of predistortion linearizer has been studied. It employs a series feedback amplifier with a large source inductance as a predistortion linearizer, which provides positive amplitude and negative phase deviations for input Power and can compensate for AM-AM and AM-PM distortions of power amplifier. This predistortion lineariaer consists of only one CaAs FET, large source inductor, input output matching networks and bias circuits. Because of its simple circuit, the linear can be operated over a broad bandwidth and has good thermal stability The characteristics of this linearizer can be easily tuned using source inductor, its gate bias condition. In fabricated linearizer, the third-order intermodulation distortion(IMD) for main amplifier alone is 10.61dBc, and the $IM_3$ for main amplifier with predistorter is 21.91dBc. Therefore, the $IM_3$ characteristic results an improvement of approximately 11dB.

  • PDF

Vibration Reduction of Cantilever using Passive Piezoelectric Shunt (수동형 압전션트를 이용한 외팔보의 진동저감 연구)

  • Yun, Yangsoo;Kim, Jaechul;Noh, Heemin
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.417-426
    • /
    • 2018
  • Piezoelectric shunt is an electric type damper capable of reducing the vibration of the structure. Vibration generated at the natural frequency of the structure are converted into electrical energy through the piezoelectric material attached to the structure. Electric energy can be dissipated by thermal energy using piezoelectric shunt composed of inductor and resistance to reduce vibration. In this paper, the equation for the optimum inductance required to reduce the vibration of the cantilever beam was examined and the vibration of the aluminum cantilever was reduced by using finite element analysis and experiments. In the finite element analysis, the mode shape and the strain energy distribution were calculated to examine the mounting position, and the vibration reduction of the cantilever was calculated by adjusting the inductance and resistance circuit values. In addition, in the experiment, a variable inductor module was used to reduce the vibration occurring at a specific frequency of the cantilever. Finally, based on the results of the finite element analysis and the experiment, it was verified that the piezoelectric shunt can effectively reduce the vibration of the cantilever.