• Title/Summary/Keyword: variable frequency power supply

Search Result 73, Processing Time 0.026 seconds

AC Plasma Power Supply with Variable Voltage and Variable Frequency (가변전압 가변주파수(VVVF) 교류 플라즈마 전원장치)

  • Shin Wan-Ho;Yun Kee-Pok;Jeoung Hwan-Myoung;Choi Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1205-1207
    • /
    • 2004
  • AC plasma power supply is used to control a ozone generator and a air pollution gas. AC plasma power supply is composed of power semiconductor switch devices and control board adapted SHE(Selected Harmonic Elimination) PWM method. AC plasma power supply with sinusoidal VVVF(variable voltage and variable frequency) is realized. Its output voltage range is from 0 [V] to 20[kV] and output frequency range is from 8[kHz] to 20[kHz]. Using proposed system, AC high voltage and high frequency discharge is tested in the DBD(dieletric barrier discharge) reactor, and the space distribution of a its non-thermal plasma is observed. In spite of the increasement of voltage and frequency, the proposed system have a stable operation characteristics. It is verified by the experimental results.

  • PDF

A study on ZVS-PWM Converter with Variable Output (가변 출력 영전압 스위칭 PWM 컨버터에 관한 연구)

  • Kim, Young-Jae;Im, Sang-Un;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.364-368
    • /
    • 1999
  • This paper suggests switching regulator technique to overcome the drawback of conventional variable linear power supply. Switching regulator technique can eliminate the extremely lossy operation and reduce the size and weight of variable linear power supply and provide nearly constant output power over the majority of output voltage range. The topology of variable switched mode power supply is employed active clamp forward converter with a current doubler rectifier and by using control of variable-frequency together with control of fixed-frequency, output voltage can be controled. Equivalent circuits pertinent to each operational mode of converter are derived, and an experimental 20V, 50A converter was designed and built. The converter operates from an output voltage of zero to 25 V, under 100 kHz switching frequency.

  • PDF

Automatic control problems of VVVF converter-based variable-frequency type air (VVVF기를 기초한 가변식기압급수설비의 자동제어 문제)

  • 박용규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.468-468
    • /
    • 1991
  • The variable-frequency type water supply equipment, which adopts the variable-voltage and variable-frequency converter(VVVF converter) to govern automatically the rotating speed of a pump, can save 15-20% of power, as compared with a throttle-controlled pump device or an airpressurized water supply equipment, and is finding a wide application. However, it still has some disadvantages : greater pressure fluctuations during switching over the pump and prolonged low-effeciency running of the pump in the case of small consumption of water. Therefore, it is difficult to apply the equipment to the fire water supply system where the water should not be put into use unless a fire takes place, and the water pressure in pipelines should permanently remain constant. This paper introduces the automatic regulation principle of the variable-frequency type air-pressurized water supply equipment (hereafter referred to as simply BFQS equipment) for dual purposes of daily life and fire control, which combined both technologies of speed governing by a converter and air-pressurized water supplying, then discusses some problems related to automatic control, and finally gives the experimental results of an embodiment-BPQS-100-50 water supply equipment.

  • PDF

A Protection Circuit for the Power Supply of a Gas Discharge Lamp

  • Kim, Ho-Sung;Kim, Jong-Hyun;Baek, Ju-Won;Yoo, Dong-Wook;Jung, Hye-Man;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.777-783
    • /
    • 2010
  • In order to drive gas discharge lamps, DC-AC converters with a LCC resonant tank, whose output voltage is adjusted by a variable frequency control are frequently used. However, when they are activated by varying the operating frequency, converters are frequently damaged by unstable operation, due to the rising and falling of the operating frequency near the resonant frequency. To solve this problem, a simple protection circuit for the power supply of a gas discharge lamp is proposed in this paper. This circuit senses the primary current of the main transformer. Using this protection circuit, the operating frequency of the lamp driving inverter system is kept close to and on the right side of the resonant frequency and the inverter is always operated in the ZVS condition. The resulting stable variable frequency operation allows various gas discharge lamps to be tested without the risk of damaging the main switches, because the protection circuit can protect the power MOSFETs of bridge converters from abnormal conditions. The validity and effectiveness of the proposed protection circuit are verified through the experimental results.

VARIABLE SPEED CONSTANT FREQUENCY POWER CONVERSION WITH A SWITCHED RELUCTANCE MACHINE

  • Rim, Geun-Hie;Krishnan, R.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1030-1034
    • /
    • 1993
  • A converter topology which is capable of four-quadrant(motoring and generation) operation is proposed for the variable speed constant frequency(hereafter referred as VSCF) power conversion scheme. The new converter topology for the VSCF power conversion scheme is made of two functional stages. One is converting stage which consists of six switches and six diodes and it interfaces a three-phase 60Hz at supply and a single-phase variable-frequency ac source. The other is the commutating stage though which each phase-winding is energized.

  • PDF

A High Voltage Poorer Supply for Electrostatic Precipitator with Superimposing Voltage Pulse on DC Source (펄스 및 직류 중첩형 전기집진기용 고전압 전원장치 개발 연구)

  • Kim, Jong-Soo;Rim, Geun-Hie;Lee, Sung-Jin;Kim, Seung-Min;Cho, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.624-630
    • /
    • 2001
  • The trend of the regulations on environmental issues are getting tight. Responding to this trend new technologies such as moving electrodes, wide pitch and pulsed power supply are also introduced in the electrostatic precipitator(EP) systems. The introduction of wide pitch and moving electrodes enhances the system performance of the EPs by improving air-flow and by improving the ash reentrainment on rapping. The power supplies for the EPs developed up to date include thyristor-based dc or intermittent type, SMPS(switching mode power supply) type and the pulsed-power supply type. The use of the pulsed ones is known to improve dust-collecting efficiency of high resistivity ash and reduces back corona occurrence in the collecting plate. There are two kinds of pulsed-power supplies; one with pulsed transformers and the other with direct dc switching devices. The latter uses rotary spark gap switches or semiconductor switches. Both have the merits and demerits: the spark gap switches are simple and robust but has short life time, hence, high maintenance cost, whereas the semiconductor switches have long life time but are costly. In this study, A high voltage power supply with superimposing voltage pulse on dc source was developed for EPs. This study describes circuit topology, operating principle of the scheme, and analysis of experimental results on Dong-Hae Power Plant. The pulsed power supply consists of a variable dc power supply with ratings of 60kV, 800mA and pulse generator which is made of high voltage thyristor-diode switch strings, an LC resonant tank and a blocking inductor. The pulse generator generates variable pulse-voltage up to 70kV using a high frequency resonant inverter with a variable dc source. Two prototypes were built and tested on 250MW DongHae power plant to verify the possibility of the commercial use and the normal operation in the transient states.

  • PDF

Common Mode Voltage Cancellation in a Buck-Type Active Front-End Rectifier Topology

  • Aziz, Mohd Junaidi Abdul;Klumpner, Christian;Clare, Jon
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.276-284
    • /
    • 2012
  • AC/AC power conversion is widely used to feed AC loads with a variable voltage and/or a variable frequency from a constant voltage constant frequency power grid or to connect critical loads to an unreliable power supply while delivering a very balanced and accurate sinusoidal voltage system of constant amplitude and frequency. The load specifications will clearly impose the requirements for the inverter stage of the power converter, while wider ranges of choices are available for the rectifier. This paper investigates the utilization of a buck-type current source rectifier as the active front-end stage of an AC/AC converter for applications that require an adjustable DC-link voltage as well as elimination of the low-frequency common mode voltage. The proposed solution is to utilize a combination of two or more zero current vectors in the Space Vector Modulation (SVM) technique for Current Sources Rectifiers (CSR).

Ultra-fast Adaptive Frequency-controlled Hysteretic Buck Converter for Portable Devices

  • Kim, Kwang-Ho;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.615-623
    • /
    • 2016
  • The paper describes a hysteretic buck converter including a differentiator and an adaptive hysteresis window controller. Differentiating the feedback signal achieves ultra-fast switching of the buck converter. The adaptive hysteresis window control allows a monotonous operation with predictable noise spectrum, and gives way to efficient design for variable supply and output voltages. The measurement results in a $0.13-{\mu}m$ CMOS process indicated that the switching frequency became double times higher, and the voltage ripple was reduced by up to 69%. They also indicated that the normalized switching frequency variation was reduced by 74% with variable $V_{DD}$ and by 63% with variable $V_{OUT}$. The power efficiency was improved by 3.5% depending on loading condition.

The characteristic analyses and output frequency tracking control of a high frequency inverter (고주파 인버터의 특성해석 및 출력주파수 추종제어)

  • 이종무;김영석;조기연
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.597-602
    • /
    • 1987
  • This paper proposes a voltage-fed high frequency resonant inverter having variable voltage variable frequency(VVVF) control function. VVVF control is performed by PWM-TRC method in the boost type chopper and PFM-TRC method in the high frequency resonant inverter. This circuit is suitable for induction heating and melting power supply in industry. The operating characteristics of this inverter are discussed from a theoretical point of view. The results of operating characteristic analyses are given leading to complete designing data.

  • PDF

Single Stage Resonant Power Supply for Driving Magnetron Device (마그네트론 구동용 단일단 공진형 전원장치)

  • Jeong Jin-Beom;Yeon Jae-Eul;Kim Hee-Jun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.10
    • /
    • pp.625-633
    • /
    • 2004
  • This paper proposed a boost input type single stage resonant power supply for driving magnetron device. The proposed power supply can control both input power factor and output power at the same time. Also, because ZVS is achieved using the resonance between leakage inductance and resonant capacitance, switching losses are drastically reduced. To prevent breakdown or moding phenomenon of the magnetron due to excessive starting voltage, variable frequency ignition method is also proposed. Experimental results for the prototype power supply are presented and discussed to verify the validity of the proposed power supply.