• 제목/요약/키워드: variable damping

검색결과 184건 처리시간 0.019초

유기압 현수장치의 반능동 제어 구현에 관한 연구 (Practical Semiactive Control of Hydropnematic Suspension Units)

  • 이윤복;송오섭
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.9-21
    • /
    • 2003
  • This paper describes the practical implementation of a semiactive hydropneumatic suspension system to provide the high off-road performance of military tracked vehicles. Real gas behavior of a spring system, frictional forces of joints, and the dynamics of a continuously variable damper are considered. The control system is consisted of two control loops, an outer loop calculates a target spool position which can deliver the required damping force and an inner loop tracks the required spool position. Dynamic tests of the one axis model show that the semiactive suspension system considerably reduces the acceleration as well as velocity and displacement of the sprung mass than the passive one.

실제기체 상태방정식과 풍상차분기법 (Real gas equation of state and upwind scheme)

  • 최정열;김진수;오세종
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.153-158
    • /
    • 2000
  • For the analysis of compressible flow with real gas effect, characteristic form of Roe's Riemann solver was derived again using real gas equation of state and variable specific heal and it was extended to multi component reactive system. From this study, it is known that some correction should be made for the use of existing numerical algorithm. 1) Sonic speed and characteristic variable should be corrected with real gas effect. 2) Roe's average was applicable only with the assumption of constant properties. 3) Artificial damping term and characteristic variables should be corrected but their influence may not be significant.

  • PDF

다상 유동 해석을 위한 압축성 실제기체 해법 (A REAL GAS SOLUTION ALGORITHMS FOR MULTI-PHASE FLOW ANALYSIS)

  • 한상훈;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.187-194
    • /
    • 2005
  • For the analysis of compressible multi-phase and real gas flows, characteristic form of Roe's Riemann solver was derived using real gas equation of state. It was extended to multi component reactive system considering variable specific heat. From this study, it is known that some correction should be made for the use of existing numerical algorithm. 1) Sonic speed and characteristic variable should be corrected with real gas effect. 2) Roe's average was applicable only with the assumption of constant properties. 3) Artificial damping term and characteristic variables should be corrected but their influences may not be significant.

  • PDF

주행속도 보상형 붐방제기의 개발 (Development of a Flow Compensating Boom Sprayer for the Speed Variation)

  • 구영모;정재은
    • Journal of Biosystems Engineering
    • /
    • 제23권3호
    • /
    • pp.211-218
    • /
    • 1998
  • A variable flow-controlled boom sprayer was developed and evaluated. Field tests were conducted to evaluate the adoptability of the sprayerr with optimal conditions. Negative response time was obtained from the field test because pump and PTO were interlocked with the speed of sprayer. Another reason for the negative value was due to the definition of the response time. With constant on-time control, the system was unstable at the conditions of small tolerance and long control interval. The performances of the spray system were stable and accurate. The stable and synchronous responses were achieved with a variable on-time control. The flow control system with an optimal condition (1.0 sec of control interval, 2 of damping ratio, 1% of tolerance) provided the proper performance for uniform spraying. A standard operating procedure of the flow compensating boom sprayer for the ground speed variation was presented and recommended.

  • PDF

MR Brake를 이용한 공압 머니퓰레이터의 과도응답특성의 향상 (Improvement of Transient Response Characteristics of Pneumatic Manipulator using MR Brake)

  • 안경관;송주영
    • 유공압시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.17-22
    • /
    • 2004
  • The goal of this paper is to improve the position control performance of pneumatic rotary actuator with variable brake using Magneto-Rheological Fluid. The air compressibility and the lack of damping of the pneumatic actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In this study, a variable rotary brake comprising Magneto-Rheological Fluid is equipped to the joint of a pneumatic manipulator. Experiments of step response have proved that the transient response of the manipulator could be improved compared with that of the conventional control algorithm by using a phase plane switching control algorithm.

  • PDF

MR 댐퍼를 이용한 반능동식 진동 제어 (Semi-active vibration control using an MR damper)

  • 전도영;박찬호;유정열
    • 제어로봇시스템학회논문지
    • /
    • 제4권1호
    • /
    • pp.26-31
    • /
    • 1998
  • For the semiactive vibration control, a variable damper and proper control systems are essential. In this research, a controllable damper was designed using the MR fluids and its mechanical properties such as damping constant and response time were measured. Since the response time of the MR damper was much longer than nominal MR fluid response time, the time delay of the damper should be considered in the design of controllers. It is shown that the advanced On/Off vibration control which includes the damper time delay performs more effectively than the conventional one.

  • PDF

주퇴작용식 발사기구의 완충특성 해석 (Investigation of isolation system in recoil type weapon)

  • 김상균;박영필;양현석;김효준;최의중;이성배;류봉조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.104-108
    • /
    • 2002
  • In this study, the dynamic absorbing system for the shoulder-fired system with high-level-impact force has been investigated. for this purpose, firstly, mathematical model based on the short recoil system has been constructed. In order to design the dynamic absorbing system, parameter sensitivity analysis and parameter optimization process have been performed under constraints of moving displacement and transmitted force. In order to enhance the efficiency of energy dissipation, the stroke-dependent variable damping system has been analyzed. finally, the performance of the designed dynamic absorbing system has been evaluated by simulation with respect to the benchmark system.

  • PDF

가변격자체계에 의한 연안구조물 주변의 파랑변형모형 (A Numerical Model for Wave Deformation around Coastal Structures in Variable Grids)

  • 이동수;김태인
    • 한국해안해양공학회지
    • /
    • 제7권1호
    • /
    • pp.1-11
    • /
    • 1995
  • 비정상 완경사방정식을 이용하여 연안구조물 주위의 파랑변형을 예측하기 위한 수치모형을 개발하였다. 쇄파와 파반사를 보다 정확하게 해석하기 위하여 Izumiya and Horikawa(1984)의 에너지방정식을 이용하여 쇄파에 의한 감쇠와 해저면 마찰을 해석하였으며, 격자간격의 제한을 받는 비정상 완경사방정식의 단점을 보완하기 위하여 가변 격자체계를 도입하였다. 본 모형에 의한 실험치를 이론치 및 기존의 수리실험 결과와 비교하여 모형의 재현성 및 가변 격자체계의 적용성을 확인하였고, 실제 해역에도 적용하였다.

  • PDF

Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects

  • Fenjan, Raad M.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권2호
    • /
    • pp.169-186
    • /
    • 2020
  • Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), mechanical-hygro-thermal vibrational analyzes of shear deformable porous functionally graded (FG) nanoplate on visco-elastic medium has been performed. The presented formulation incorporates two scale factors for examining vibrational behaviors of nano-dimension plates more accurately. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. It is supposed that the nano-size plate is exposed to hygro-thermal and variable compressive mechanical loadings. The governing equations achieved by Hamilton's principle are solved implementing DQM. Presented results indicate the prominence of moisture/temperature variation, damping factor, material gradient index, nonlocal coefficient, strain gradient coefficient and porosities on vibrational frequencies of FG nano-size plate.

Vibration of piezo-magneto-thermoelastic FG nanobeam submerged in fluid with variable nonlocal parameter

  • Selvamani Rajendran;Rubine Loganathan;Murat Yaylaci;Ecren Uzun Yaylaci;Mehmet Emin Ozdemir
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.489-500
    • /
    • 2024
  • This paper studies the free vibration analysis of the piezo-magneto-thermo-elastic FG nanobeam submerged in a fluid environment. The problem governed by the partial differential equations is determined by refined higher-order State Space Strain Gradient Theory (SSSGT). Hamilton's principle is applied to discretize the differential equation and transform it into a coupled Euler-Lagrange equation. Furthermore, the equations are solved analytically using Navier's solution technique to form stiffness, damping, and mass matrices. Also, the effects of nonlocal ceramic and metal parts over various parameters such as temperature, Magnetic potential and electric voltage on the free vibration are interpreted graphically. A comparison with existing published findings is performed to showcase the precision of the results.