• 제목/요약/키워드: variable cross section

검색결과 188건 처리시간 0.024초

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

비보존력이 작용하는 불연속 변단면 기둥의 안정성 (Stability of Stepped Columns Subjected to Nonconservative Force)

  • 오상진;모정만;이재영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.801-804
    • /
    • 2006
  • The purpose of this paper is to investigate the stability of stepped cantilever columns with a tip mass of rotatory inertia and a translational spring at one end. The column model is based on the Bernoulli-Euler theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibration of columns with stepwise variable cross-section and subjected to a subtangential follower force is solved numerically using the corresponding boundary conditions. And the bisection method is used to calculate the critical divergence/flutter load. The frequency and critical divergence/flutter load for the stepped column with a single step are presented as functions of various non-dimensional system parameters: the segmental length parameter, the section ratio, the subtangential parameter, the mass, the moment of inertia of the mass, and the spring parameter.

  • PDF

Optimum design of parabolic steel box arches

  • Azad, Abul K.;Mohdaly, Hani M.M.
    • Structural Engineering and Mechanics
    • /
    • 제9권2호
    • /
    • pp.169-180
    • /
    • 2000
  • An optimization procedure has been prescribed for the minimum weight design of symmetrical parabolic arches subjected to arbitrary loading. The cross section is assumed to be a symmetrical box section with variable depth and flange areas. The webs are unstiffened and have constant thickness. The proposed sequential, iterative search technique determines the optimum geometrical configuration of the parabolic arch which includes the optimum depth profile and the optimum lengths and areas of the required flange plates corresponding to the prescribed number of curtailments. The study shows that the optimum value of rise to span ratio (h/L) of a parabolic arch is maximum at 0.41 for uniformly distributed loading over the entire span. For any other loading, the optimum value of h/L is less than 0.41.

NEW METHODS OF THE GROWING COMPLICATED SHAPED SAPPHIRE PRODUCTS: VARIABLE SHAPING TECHNIQUE AND LOCAL DYNAMIC SHAPING TECHNIQUE

  • Borodin, V.A.;Sidorov, V.V.;Steriopolo, T.A.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1999년도 PROCEEDINGS OF 99 INTERNATIONAL CONFERENCE OF THE KACG AND 6TH KOREA·JAPAN EMG SYMPOSIUM (ELECTRONIC MATERIALS GROWTH SYMPOSIUM), HANYANG UNIVERSITY, SEOUL, 06월 09일 JUNE 1999
    • /
    • pp.209-225
    • /
    • 1999
  • Detailed description of the crystal growth methods permitting one to obtain complicated shape crystals from the melt is given. The variable shaping technique provides the growth of crystals with a discrete altering cross-section configuration during crystallization. The dynamic local shaping technique enables one to grow items with a continuous alteration of the side surface profile by a preset program.

  • PDF

New methods of the growing complicated shaped sapphire products: variable shaping technique and local dynamic shaping technique

  • Borodin, V.A.;Sidorov, V.V.;Steriopolo, T.A.
    • 한국결정성장학회지
    • /
    • 제9권4호
    • /
    • pp.417-423
    • /
    • 1999
  • Detailed description of the crystal growth methods permitting one to obtain complicated shape crystals from the melt is given. The variable shaping technique provides the growth of crystals with a discrete altering cross-section configuration during crystallization. The dynamic local shaping technique enables one to grow items with a continuous alteration of the side surface profile by a preset program.

  • PDF

Flexural free vibration of cantilevered structures of variable stiffness and mass

  • Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.243-256
    • /
    • 1999
  • Using appropriate transformations, the differential equation for flexural free vibration of a cantilever bar with variably distributed mass and stiffness is reduced to a Bessel's equation or an ordinary differential equation with constant coefficients by selecting suitable expressions, such as power functions and exponential functions, for the distributions of stiffness and mass. The general solutions for flexural free vibration of one-step bar with variable cross-section are derived and used to obtain the frequency equation of multi-step cantilever bars. The new exact approach is presented which combines the transfer matrix method and closed form solutions of one step bars. Two numerical examples demonstrate that the calculated natural frequencies and mode shapes of a 27-storey building and a television transmission tower are in good agreement with the corresponding experimental data. It is also shown through the numerical examples that the selected expressions are suitable for describing the distributions of stiffness and mass of typical tall buildings and high-rise structures.

Transfer matrix formulations and single variable shear deformation theory for crack detection in beam-like structures

  • Bozyigit, Baran;Yesilce, Yusuf;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • 제73권2호
    • /
    • pp.109-121
    • /
    • 2020
  • This study aims to estimate crack location and crack length in damaged beam structures using transfer matrix formulations, which are based on analytical solutions of governing equations of motion. A single variable shear deformation theory (SVSDT) that considers parabolic shear stress distribution along beam cross-section is used, as well as, Timoshenko beam theory (TBT). The cracks are modelled using massless rotational springs that divide beams into segments. In the forward problem, natural frequencies of intact and cracked beam models are calculated for different crack length and location combinations. In the inverse approach, which is the main concern of this paper, the natural frequency values obtained from experimental studies, finite element simulations and analytical solutions are used for crack identification via plots of rotational spring flexibilities against crack location. The estimated crack length and crack location values are tabulated with actual data. Three different beam models that have free-free, fixed-free and simple-simple boundary conditions are considered in the numerical analyses.

Hybrid nonlinear control of a tall tower with a pendulum absorber

  • Orlando, Diego;Goncalves, Paulo B.
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.153-177
    • /
    • 2013
  • Pendulums can be used as passive vibration control devices in several structures and machines. In the present work, the nonlinear behavior of a pendulum-tower system is studied. The tower is modeled as a bar with variable cross-section with concentrated masses. First, the vibration modes and frequencies of the tower are obtained analytically. The primary structure and absorber together constitute a coupled system which is discretized as a two degrees of freedom nonlinear system, using the normalized eigenfunctions and the Rayleigh-Ritz method. The analysis shows the influence of the geometric nonlinearity of the pendulum absorber on the response of the tower. A parametric analysis also shows that, with an appropriate choice of the absorber parameters, a pendulum can decrease the vibration amplitudes of the tower in the main resonance region. The results also show that the pendulum nonlinearity cannot be neglected in this type of problem, leading to multiplicity of solutions, dynamic jumps and instability. In order to improve the effectiveness of the control during the transient response, a hybrid control system is suggested. The added control force is implemented as a non-linear variable stiffness device based on position and velocity feedback. The obtained results show that this strategy of nonlinear control is attractive, has a good potential and can be used to minimize the response of slender structures under various types of excitation.

X-ring의 접촉 응력 해석에 관한 연구 (A Study on the Contact Stress Analysis for X-ring)

  • 이현승;이영신;이중현;천병선;백준호;김석윤
    • 대한기계학회논문집A
    • /
    • 제32권9호
    • /
    • pp.733-739
    • /
    • 2008
  • The X-ring is a elastomer with X-shaped cross-section used as a mechanical seal or gasket. Such a X-ring was equipped in a groove and compressed between two or more parts, acts as a seal on the interface. This study aims to detect contact stress and deformed shape of a X-shaped ring shell under various compressive contact conditions. A contact stress analysis was carried out by finite element analysis. The effect of compression rates and thickness design variable was analyzed. X-ring kept up the double seal until a compression rate of 20%. The maximum stresses of the X-ring was occurred at the top and bottom corner. The maximum contact stress of X-ring was rapidly increased according with the compression rate. The X-rings with thickness design variable from 1.3 mm to 1.5 mm had comparative low stress levels.

선박의 보강판 구조물의 동특성의 최적 변경법에 관한 연구 (A Study on the Optimum Modification of Dynamic Characteristics of Stiffened Plate Structure of Ship)

  • 박성현;박석주;고재용
    • 한국항해학회지
    • /
    • 제25권1호
    • /
    • pp.45-52
    • /
    • 2001
  • 본 논문은 선체구조에 많이 이용되고 있는 보강판 구조물의 동적 특성을 최적 변경하는데 그 목적이 있다. 유한요소법(FEM), 동적 감도해석법, 최적구조 변경법을 이용하여 보강판의 동적 특성을 최적화한다. 먼저, FEM을 이용하여 보강판 구조물의 동적 특성을 해석한다. 다음으로 설계변수의 변화에 따른 동적 특성의 변화율을 동적 감도해석법으로 해석한다. 감도해석법으로 구한 감도값과 최적구조 변경법을 이용하여 설계변수들의 변경 량을 계산한다. 보강판 구조물의 고유진동수의 변경을 목적함수로 하고, 보강판의 두께와 보강재의 단면2차 모우멘트를 설계 변수로 한다. 본 논문에서 이용한 최적구조 변경법이 보강판 구조물의 동특성을 최적화하는데 유용함을 보여준다.

  • PDF