• Title/Summary/Keyword: vanishing points estimation

Search Result 10, Processing Time 0.024 seconds

Lane Detection-based Camera Pose Estimation (차선검출 기반 카메라 포즈 추정)

  • Jung, Ho Gi;Suhr, Jae Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.463-470
    • /
    • 2015
  • When a camera installed on a vehicle is used, estimation of the camera pose including tilt, roll, and pan angle with respect to the world coordinate system is important to associate camera coordinates with world coordinates. Previous approaches using huge calibration patterns have the disadvantage that the calibration patterns are costly to make and install. And, previous approaches exploiting multiple vanishing points detected in a single image are not suitable for automotive applications as a scene where multiple vanishing points can be captured by a front camera is hard to find in our daily environment. This paper proposes a camera pose estimation method. It collects multiple images of lane markings while changing the horizontal angle with respect to the markings. One vanishing point, the cross point of the left and right lane marking, is detected in each image, and vanishing line is estimated based on the detected vanishing points. Finally, camera pose is estimated from the vanishing line. The proposed method is based on the fact that planar motion does not change the vanishing line of the plane and the normal vector of the plane can be estimated by the vanishing line. Experiments with large and small tilt and roll angle show that the proposed method outputs accurate estimation results respectively. It is verified by checking the lane markings are up right in the bird's eye view image when the pan angle is compensated.

A Robust Power Transmission Lines Detection Method Based on Probabilistic Estimation of Vanishing Point (확률적인 소실점 추정 기법에 기반한 강인한 송전선 검출 방법)

  • Yoo, Ju Han;Kim, Dong Hwan;Lee, Seok;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • We present a robust power transmission lines detection method based on vanishing point estimation. Vanishing point estimation can be helpful to detect power transmission lines because parallel lines converge on the vanishing point in a projected 2D image. However, it is not easy to estimate the vanishing point correctly in an image with complex background. Thus, we first propose a vanishing point estimation method on power transmission lines by using a probabilistic voting procedure based on intersection points of line segments. In images obtained by our system, power transmission lines are located in a fan-shaped area centered on this estimated vanishing point, and therefore we select the line segments that converge to the estimated vanishing point as candidate line segments for power transmission lines only in this fan-shaped area. Finally, we detect the power transmission lines from these candidate line segments. Experimental results show that the proposed method is robust to noise and efficient to detect power transmission lines.

RANSAC-based Or thogonal Vanishing Point Estimation in the Equirectangular Images

  • Oh, Seon Ho;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1430-1441
    • /
    • 2012
  • In this paper, we present an algorithm that quickly and effectively estimates orthogonal vanishing points in equirectangular images of urban environment. Our algorithm is based on the RANSAC (RANdom SAmple Consensus) algorithm and on the characteristics of the line segment in the spherical panorama image of the $360^{\circ}$ longitude and $180^{\circ}$ latitude field of view. These characteristics can be used to reduce the geometric ambiguity in the line segment classification as well as to improve the robustness of vanishing point estimation. The proposed algorithm is validated experimentally on a wide set of images. The results show that our algorithm provides excellent levels of accuracy for the vanishing point estimation as well as line segment classification.

Semi-Auto Camera Calibration Method for 3D Information Generation (3차원 공간정보 생성을 위한 반자동 카메라 교정 방법)

  • Kim, Hyungtae;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.127-135
    • /
    • 2015
  • In this paper, we propose the semi-auto camera calibration method including user input. The proposed method estimates the vanishing points using user defined reference lines and defines the constraint for reducing outlier in vanishing points estimation process. The proposed camera calibration method based on both algebraic and geometric method improves a calibration performance for difficult condition, which represents that existing method can't calibrate a image. Experimental results show that the proposed method calibration accuracy higher than existing method.

A Study on the Estimation of Camera Calibration Parameters using Cooresponding Points Method (점 대응 기법을 이용한 카메라의 교정 파라미터 추정에 관한 연구)

  • Choi, Seong-Gu;Go, Hyun-Min;Rho, Do-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.4
    • /
    • pp.161-167
    • /
    • 2001
  • Camera calibration is very important problem in 3D measurement using vision system. In this paper is proposed the simple method for camera calibration. It is designed that uses the principle of vanishing points and the concept of corresponding points extracted from the parallel line pairs. Conventional methods are necessary for 4 reference points in one frame. But we proposed has need for only 2 reference points to estimate vanishing points. It has to calculate camera parameters, focal length, camera attitude and position. Our experiment shows the validity and the usability from the result that absolute error of attitude and position is in $10^{-2}$.

  • PDF

이동로봇주행을 위한 영상처리 기술

  • 허경식;김동수
    • The Magazine of the IEIE
    • /
    • v.23 no.12
    • /
    • pp.115-125
    • /
    • 1996
  • This paper presents a new algorithm for the self-localization of a mobile robot using one degree perspective Invariant(Cross Ratio). Most of conventional model-based self-localization methods have some problems that data structure building, map updating and matching processes are very complex. Use of a simple cross ratio can be effective to the above problems. The algorithm is based on two basic assumptions that the ground plane is flat and two locally parallel sloe-lines are available. Also it is assumed that an environmental map is available for matching between the scene and the model. To extract an accurate steering angle for a mobile robot, we take advantage of geometric features such as vanishing points. Feature points for cross ratio are extracted robustly using a vanishing point and intersection points between two locally parallel side-lines and vertical lines. Also the local position estimation problem has been treated when feature points exist less than 4points in the viewed scene. The robustness and feasibility of our algorithms have been demonstrated through real world experiments In Indoor environments using an indoor mobile robot, KASIRI-II(KAist Simple Roving Intelligence).

  • PDF

A Vanishing Point Detection Method Based on the Empirical Weighting of the Lines of Artificial Structures (인공 구조물 내 직선을 찾기 위한 경험적 가중치를 이용한 소실점 검출 기법)

  • Kim, Hang-Tae;Song, Wonseok;Choi, Hyuk;Kim, Taejeong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.642-651
    • /
    • 2015
  • A vanishing point is a point where parallel lines converge, and they become evident when a camera's lenses are used to project 3D space onto a 2D image plane. Vanishing point detection is the use of the information contained within an image to detect the vanishing point, and can be utilized to infer the relative distance between certain points in the image or for understanding the geometry of a 3D scene. Since parallel lines generally exist for the artificial structures within images, line-detection-based vanishing point-detection techniques aim to find the point where the parallel lines of artificial structures converge. To detect parallel lines in an image, we detect edge pixels through edge detection and then find the lines by using the Hough transform. However, the various textures and noise in an image can hamper the line-detection process so that not all of the lines converging toward the vanishing point are obvious. To overcome this difficulty, it is necessary to assign a different weight to each line according to the degree of possibility that the line passes through the vanishing point. While previous research studies assigned equal weight or adopted a simple weighting calculation, in this paper, we are proposing a new method of assigning weights to lines after noticing that the lines that pass through vanishing points typically belong to artificial structures. Experimental results show that our proposed method reduces the vanishing point-estimation error rate by 65% when compared to existing methods.

The course estimation of vehicle using vanishing point and obstacle detection (무한원점을 이용한 주행방향 추정과 장애물 검출)

  • 정준익;최성구;노도환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.126-137
    • /
    • 1997
  • This paper describes the algorithm which can estimate road following direction and deetect obstacle using a monocular vision system. This algorithm can estimate the course of vehicle using the vanishing point properties and detect obstacle by statistical method. The proposed algorithm is composed of four steps, which are lane prediction, lane extraction, road following parameter estimation and obstacle detection. It is designed for high processing speed and high accuracy. The former is achieved by a small area named sub-windown in lane existence area, the later is realized by using connected edge points of lane. We would like to present that the new mehod can detect obstacle using the simple statistical method. The paracticalities of the processing speed, the accuracy of the algorithm and proposing obstacle detection method, have been justified through the experiment applied VTR image of the real road to the algorithm.

  • PDF

Visual Positioning System based on Voxel Labeling using Object Simultaneous Localization And Mapping

  • Jung, Tae-Won;Kim, In-Seon;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.302-306
    • /
    • 2021
  • Indoor localization is one of the basic elements of Location-Based Service, such as indoor navigation, location-based precision marketing, spatial recognition of robotics, augmented reality, and mixed reality. We propose a Voxel Labeling-based visual positioning system using object simultaneous localization and mapping (SLAM). Our method is a method of determining a location through single image 3D cuboid object detection and object SLAM for indoor navigation, then mapping to create an indoor map, addressing it with voxels, and matching with a defined space. First, high-quality cuboids are created from sampling 2D bounding boxes and vanishing points for single image object detection. And after jointly optimizing the poses of cameras, objects, and points, it is a Visual Positioning System (VPS) through matching with the pose information of the object in the voxel database. Our method provided the spatial information needed to the user with improved location accuracy and direction estimation.

Intrinsic Camera Calibration Based on Radical Center Estimation (근심 추정 기반의 내부 카메라 파라미터 보정)

  • 이동훈;김복동;정순기
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.742-744
    • /
    • 2004
  • 본 논문에서는 두 개의 직교하는 소실점(Orthogonal Vanishing Points)을 이용하여 카메라의 내부 파라미터를 추정하기 위한 방법을 제안한다. 카메라 보정(camera calibration)은 2차원 영상으로부터 3차원 정보를 얻기 위한 중요한 단계이다. 기존의 소실점을 이용한 대부분의 방법들은 세 개의 직교하는 소실점을 사용하여 파라미터론 추정하지만, 실제 영상에서는 세 개의 직교 소실점을 포함하는 영상을 획득하는 것은 어려운 문제이다 따라서 본 논문에서는 2개의 직교 소실점을 사용하여 카메라 U부 보정을 위한 기하적이고 직관적인 새로운 방법을 제안한다. 주점(principal point)과 초점거리(focal length)는 Thales의 이론을 기초한 기하학적 제약사항으로부터 다중 반구(multiple hemispheres)들의 관계로부터 유도된다.

  • PDF