• Title/Summary/Keyword: vanadium substitution

Search Result 14, Processing Time 0.024 seconds

Effects of Vanadium Doping on Magnetic Properties of Inverse Spinel Fe3O4 Thin Films (역스피넬 Fe3O4 박막의 바나듐 도핑에 따르는 자기적 성질 변화)

  • Kim, Kwang-Joo;Choi, Seung-Li;Park, Young-Ran;Park, Jae-Yun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.18-22
    • /
    • 2006
  • Effects of V substitution of Fe on the magnetic properties of $Fe_3O_4$ have been investigated by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), conversion electron Mossbauer spectroscopy (CEMS), and vibrating sample magnetometry (VSM) measurements on sol-gel-grown films. XRD data indicates that the $V_xFe_{3-x}O_4$ films maintain cubic structure up to x=1.0 with little change of the lattice constant. Analyses on V 2p and Fe 2p levels of the XPS data indicate that V exist as $V^{3+}$ mostly in the $V_xFe_{3-x}O_4$ films with the density of $V^{2+}$ ions increasing with increasing V content. Analyses on the CEMS data indicate that $V^{3+}$ ions substitute tetrahedral $Fe^{3+}$ sites mostly, while $V^{2+}$ ions octahedral $Fe^{2+}$ sites. Results of room-temperature VSM measurements on the films reveal that the saturation magnetization for the x=0.14 sample is larger than that of $Fe_3O_4$, while it becomes smaller than that of $Fe_3O_4$ for $x{\geq}0.5$. The coercivity of the $V_xFe_{3-x}O_4$ films is found to increase with x, attributed to the increase of anisotropy by the substitution of $V^{2+}(d^3)$ ions into the octahedral sites.

Mössbauer Study of Crystallographic and Magnetic Properties in Vanadium Ferrite(VxFe3-xO4) Thin Films (바나듐 페라이트 박막의 결정구조 및 자기적 성질에 관한 뫼스바우어 분광학적 연구)

  • Park, Jae-Yun;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • The mixed ferrite $V_xFe_{3-x}O_4$(x=0.0, 0.15, 0.5, 1.0) thin films were prepared by sol-gel method. Their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). The crystal structure is found to be cubic spinel throughout the series($x{\leq}1.0$), and the lattice parameter $a_0$ increases linearly with increasing V content. XRD, XSP and CEMS indicate that $V^{3+}$ substitution for $Fe^{3+}$ in B-site is superior to $V^{2+}$ substitution for $Fe^{2+}$ in B-site. It is noticeable that both quadrupole shift and hyperfine field decreases with increasing V composition, suggesting the change of local symmetry and accompanying line-broadening. The line-broadening on CEMS spectra can be explained by the distribution of magnetic hyperfine fields.

Effect of Melt-Spinning Process on Hydrogen Storage Properties of Mass-Produced Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 Alloy (대량용해 Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 수소저장합금의 용융방사공정을 통한 수소저장특성)

  • Kim, Jinho;Han, Kyusung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.367-372
    • /
    • 2013
  • Hydrogen storage as a metal hydride is the most promising alternative because of its relatively large hydrogen storage capacities near room temperature. TiMn2-based C14 Laves phases alloys are one of the promising hydrogen storage materials with easy activation, good hydriding-dehydriding kinetics, high hydrogen storage capacity and relatively low cost. In this work, multi-component, hyper-stoichiometric $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ C14 Laves phase alloys were prepared by a vacuum induction melting for a hydrogen storage tank. Since pure vanadium (V) is quite expensive, the substitution of the V element in these alloys has been tried and some interesting results were achieved by replacing V by commercial ferrovanadium (FeV) raw material. In addition, the melt-spinning process, which was applied to the manufacturing of some of these alloys, could make the plateau slopes much flatter, which resulted in the increase of reversible hydrogen storage capacity. The improvement of sloping properties of melt-spun $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ alloys was mainly attributed to the homogeneity of chemical composition.

Characteristics of Sr0.92Y0.08Ti1-xVxO3-δ (x = 0.01, 0.04, 0.07, 0.12) Anode for Using H2S Containing Fuel in Solid Oxide Fuel Cells (H2S를 포함하는 연료를 사용하기 위한 고체산화물 연료전지용 Sr0.92Y0.08Ti1-xVxO3-δ 연료극 특성)

  • Jang, Geun Young;Kim, Jun Ho;Mo, Su In;Park, Gwang Seon;Yun, Jeong Woo
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.557-564
    • /
    • 2021
  • Sr0.92Y0.08Ti1-xVxO3-δ (SYTV) with perovskite structure was investigated as an alternative anode to utilize H2S containing fuels in solid oxide fuel cells. To improve the electrochemical performance of Sr0.92Y0.08TiO3-δ (SYT), vanadium(V) was substituted to titanium(Ti) at the B-site of the SYT perovskites. The SYTV synthesized by the Pechini method was chemically compatible with the YSZ electrolyte without additional by-products formation under the cell fabricating conditions. As increasing V substitution amounts, the oxygen vacancies increased, resulting to increasing ionic conductivity of the anode. The cell performance in pure H2 at 850 ℃ is 19.30 mW/cm2 and 34.87 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively. The cell performance using H2 fuel containing 1000 ppm of H2S at 850 ℃ was 23.37 mW/cm2 and 73.11 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively.