• Title/Summary/Keyword: valve train system

Search Result 65, Processing Time 0.025 seconds

The Effects of Design Parameters on the Friction Characteristics in the Valve Train System

  • Kim, Ji-Young;Han, Dong-Chul;Cho, Myung-Rae
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.75-79
    • /
    • 2001
  • This paper is a report on the parametric study of the friction characteristics on the direct acting type OHC valve train system. The numerical simulation was performed by using the IV-TAP. Dynamic analysis by using the lumped mass method was previously performed to define the acting load. The friction characteristics were analyzed by using the partial asperity contact model. The effects of operating conditions and major design parameters on the total driving torque were investigated. From the analytical prediction, it is found that valve spring stillness, surface roughness, and base circle radius are the main factors to reduce the frictional loss on the valve train system.

  • PDF

The Analysis and Experiments for the Design of Electro-mechanical Variable Valve Train System (VVT용 전자식 흡/배기 밸브 시스템 설계를 위한 해석 및 실험)

  • 박승현;오성진;이종화;박경석;김도중
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.60-67
    • /
    • 2001
  • As a method of variable valve train(VVT), Electro-Mechanical Valve(EMV) has been studied. Compared with conventional VVT system, the EMV system has a relatively simple structure. The system has two electromagnets, springs and an armature. The system can be operated by reciprocal action between armature and two electromagnets. And, the operating event can be controlled by electrical signal from controller. Therefore, reduction of emission and fuel consumption can be achieved through valve event control at each engine operating condition. In this study, characteristics of EMV system were investigated by simulations and experiments. The results of simulation and experiment show that the core shape and material characteristics are dominant parameters on magnetic force and delay time. In order to apply the system to commercial engine, it has a compact size and high stiffness springs(50N/mm) to increase the valve speed. Because of high valve seating velocity, loud noise and high impact force generated, which can lead to reduction of actuator durability. Therefore, further research is required to reduce valve seating velocity.

  • PDF

A Study of the Effects of Ceramic Tappet Shim Surface Roughness on the Friction Characteristics in the Valve Train System (세라믹 태핏심 표면 거칠기에 따른 엔진 밸브트레인계의 마찰 특성에 관한 연구)

  • 김승철;박형준;강경필;오대윤;최재권
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.115-123
    • /
    • 1998
  • A $Si_3N_4$ tappet shim was devdoped in a direct OHC engine for the friction reduction of valve train system that contributes significantly to the engine friction in real driving condition. For commercializing $Si_3N_4$ tappet shim, it is important to reduce the machining cost. Therefore we analytically and experimentally figure out the optimum condition. Using ceramic tappet shims machined with different surface roughness, the effects of roughness on the friction loss were analyzed in view of the lubrication behavior. From this results it is shown that the friction torque of valve train system quickly drops at a certain surface roughness of ceramic tappet shim and its value remains constant despite further smoothing.

  • PDF

Dynamic Elastohydrodynamic Film Thickness in Rocker-Arm Valve Train System (로커암 밸브 트레인의 동적 탄성유체윤활 유막 연구)

  • 장시열;이희락
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.195-202
    • /
    • 2003
  • Many computational researches have been performed about EHL film thickness in the contact between cam and follower in the engine valve train system. However, those computations do not explain the characteristics of dynamic film thickness which means squeeze film effect. Without the consideration of transient term in the Reynold's equation, the predicted film thickness from steady state condition has large difference from the actual film thickness. In this study, we have investigated the kinematic and dynamic simulations of rocker-arm valve train system. From the dynamic simulation, the applied load and the entraining velocity of the lubricant between cam and follower are obtained and with these values the dynamic film thickness is computed by Newton-Raphson method and compared with the steady state film thickness.

A Study of Valve-train Life Time Estimate in Engine Durability Test (2) (엔진내구시험을 통한 Valve Train 수명예측에 관한 연구 (2))

  • Kim, Jaejin;Lee, Hwanhui;Myung, Wanghee;Min, Byengdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.75-80
    • /
    • 2014
  • In previous study, make an attempt to estimate exhaust valve seat and seat-ring wear acceleration factor for engine durability test with measuring and consideration of wear mechanism. But found abnormal initial wear rate in exhaust valve seat-ring. And have to improve exhaust valve seat-ring wear rate for reliability reason, because next GDI/Turbo engine is based on this engine and GDI/Turbo engine have higher combustion pressure and higher thermal load. In this study, Trying to find the cause of abnormal wear factor, improve valve-train durability by change specification & design of parts and verify variant parts for improving durability of valve-train. And then I would like to propose a design guide line of valve-train system in a reliability point of view, besides make a complement of previous study.

An Experimental Study on the Tappet Spin for a Direct Acting Valve Train System (직접 구동형 밸브 트레인 시스템의 태핏 회전에 관한 실험적 연구)

  • Cho, Myung-Rae;Kim, Hyung-Jun;Moon, Tae-Seon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1179-1184
    • /
    • 2003
  • The technique for measuring the rotational speed of tappet in direct acting type valve train system has been developed. The optic signal monitoring system with laser and optic fiber was designed to follow the signal of tappet rotation. The system was based on ON/OFF signal generation from the additional encoder teeth under the tappet with optic fibers attached photo transistor. The data showed that tappet rotation was affected by offset, oil temperature and cam shaft operating speed. Also it was found that tappet rotation increases with oil temperature. Tappet spin was delayed 10∼s20$^{\circ}$ cam angle after valve opening. The instantaneous rotational speed of tappet was reciprocal to cam shaft speed and the tappet and the cam angle ratio was located in the range of 0.1∼0.3.

The Characteristics of Friction in Direct Acting OHC Valve Train System (직접 구동형 OHC 밸브 트레인 시스템의 마찰 특성)

  • 한동철;조명래
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.23-27
    • /
    • 1998
  • The characteristics of friction in direct acting OHC vane train system have been investigated by the comparison of experimental and theoretical results. A modified friction model was presented to calculate the friction force at cam/tappet contact. A simple experimental system was evaluated to measure the friction force and the camshaft driving torque. The friction force was measured by using the dynamic loadcell. Good agreement was found between theoretical and experimental results in friction force, but there was a little difference in driving torque.

A Study on the Equalization of Pneumatic Brake-Release Performance between Various Freight Cars (이종(異種) 화물열차의 제동-완해 공기압성능 균등화에 관한 연구)

  • Nam, Seong-Won;Moon, Kyung-Ho;Lee, Dong-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.525-532
    • /
    • 2001
  • Experimental study has been conducted to clarify the pneumatic characteristics of brake system for freight train and enhance the performance of diaphragm valve. Empty-load and diaphragm brake systems are mainly used in the freight trains of KNR (Korean National Railroad). The train set is composed of thirty freight cars and diesel locomotive. From the experimental results, new quick release valve shortens release time after brake application. In case of normal brake application, the release time is short by 34% of that of original diaphragm control valve. It will be expected to assure brake-release application and reduce maintenance efforts.

  • PDF

Development of a GVT (Gas Valve Train) Control System for LNG Fueled Vessels (LNG 추진 선박 엔진용 GVT 제어 시스템 개발)

  • Kang, Inpil;Kim, Kyu-Cheol
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.70-76
    • /
    • 2017
  • This paper presents the development of a Gas Valve Train (GVT) control system which is the core equipment of LNG fueled vessels. Due to the increasing worldwide demand for echo friendly green ship products, domestic companies urgently require to develop a core equipments for the LNG fueled vessels to secure worldwide markets in marine engineering. A LNG fueled engine generally equips the GVT, a fuel supply system that steadily supplies clean high-pressure LNG to the engine. The GVT requires a safety operational control system that can prevent any gas leakage accident, and a system that monitors operation status in real time. Therefore, we introduces a development for GVT control and monitoring system design and the design was systematically performed by means of functional analysis and differentiation of foreign advanced products.

Development of Measurement System for Tappet Rotation in the Valve Train System (밸브 트레인 시스템의 태핏 회전 측정 장치의 개발)

  • 김형준;조명래;신흥주;한동철
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.81-86
    • /
    • 1998
  • The purpose of this paper is to measure the rotational speed of tappet in OHC valve train system. Tappet has eccentricity about cam center, which induces the tappet rotation and prevents from wear. In this paper, the experimental test rig which composes of one cam system is developed to measure the tappet rotation by using the laser generating system, rotary encoder, optical fiber, and photo transistor. The direction of tappet rotation is judged from the oder of optical signal. As results of experiment, average and instant rotational speed and average rotation angle per one cam revolution are presented. Measured results show that eccentricity ratio is dominant factor for the tappet rotation, and tappet is rotated at the base circle.