정규식생지수는 농업분야에 가장 많이 사용된 원격탐사 자료로, 현재 대부분의 광학위성에서 제공되고 있다. 특히 고해상도 광학위성영상이 제공되면서 농업 활용 분야에 따른 최적의 광학위성영상의 선택이 매우 중요한 이슈가 되었다. 본 연구에서는 국내 논지역의 정규식생지수 모니터링 시 가장 최적의 광학위성영상을 정의하고 이를 위해 필요한 해상도 관련 요구조건을 도출하고자 한다. 이를 위해 전 세계적으로 많이 사용되는 MOD13, Landsat-8, Sentinel-2A/B, PlanetScope 위성의 정규식생지수영상을 대상으로 국내 당진 논지역의 공간분포 및 2019년부터 2022년까지 시계열 패턴을 비교, 분석하였다. 각 자료는 3-250 m의 공간해상도와 다양한 주기해상도로 제공되며, 정규식생지수를 산출할 때 사용되는 분광밴드의 영역도 약간의 차이가 있다. 분석 결과 Landsat-8은 가장 낮은 정규식생지수 값을 나타내며 공간적으로 변이도 매우 낮았다. 이에 비해 MOD13 정규식생지수 영상은 PlanetScope 자료와 비슷한 공간분포 및 시계열 패턴을 나타났으나 낮은 공간해상도로 인해 논 주변지역의 영향을 받았다. Sentinel-2A/B는 넓은 근적외선밴드 영역으로 인해 상대적으로 약간 낮은 정규식생지수 값을 나타내었으며, 특히 생육 초기시기에 그 특징이 두드러졌다. PlanetScope의 정규식생지수가 상세한 공간적 변이 및 안정적인 시계열 패턴을 제공하나 높은 구매가격을 고려하면 공간적으로 균일한 논지역보다는 밭지역에서 그 활용성이 높을 것으로 사료된다. 이에 따라 국내 논지역에 대해서는 250 m급 MOD13 정규식생지수나 10 m급 Sentinel-2A/B가 가장 효율적일 것으로 사료되나 작물의 개체에 대한 상세 물리량 추정을 위해서는 고해상도 위성영상이 활용될 수 있다.
기후변화 등으로 인해 전 세계적으로 산불이 점점 잦아지고 대형화되는 추세다. 위성영상 등의 원격탐사를 통한 산불피해 면적 및 피해강도를 산정하는 것은 현장조사에 따른 여러 가지 어려움을 줄일 수 있어 대안 및 보조자료로 활용이 가능하다. 산불피해강도(differenced normalized burn ratio, dNBR)는 산불 전후의 정규탄화지수(normalized burn ratio, NBR) 차이를 통해 산정하며, NBR 수식에 사용되는 영상은 Landsat의 근적외선(near infrared, NIR)과 단적외선(short-wavelength infrared, SWIR) 밴드를 기본으로 한다. 우리나라 위성영상의 경우, SWIR 밴드를 가지고 있지 않기 때문에 산불피해와 관련한 국내 연구들은 해외영상을 사용하거나 우리나라 위성영상을 사용한 경우, 정규식생지수(normalized difference vegetation index, NDVI)를 이용하여 간접적인 방법으로 dNBR을 산출하였다. 따라서 본 연구에서는 Kompsat-3A호(K3A)의 중적외선(mid-wavelength infrared, MWIR) 밴드를 NBR 수식의 SWIR 밴드 대신 대입하여 dNBR을 산정하고, dNBR의 기준이 되는 Landsat을 이용한 dNBR 결과 값과 비교하였다. 그 결과 K3A MWIR을 이용한 dNBR이 Landsat SWIR을 이용한 dNBR에 비해 나타낼 수 있는 값의 범위가 더 넓고 세분화하여 표현이 가능하였다. 따라서 산불피해 지역을 조사하는데 있어 K3A의 활용도가 높을 것이라 사료된다. 뿐만 아니라 본 연구에서는 30m로 열화된 K3A MWIR 밴드를 사용했으나 그보다 높은 해상도의 MWIR 밴드를 사용한다면 본 연구보다 훨씬 더 나은 결과를 얻을 수 있을 것이라 사료된다.
기후변화로 인한 대형 산불의 빈도가 증가함에 따라 극심한 인명 및 재산상의 피해를 초래하고 있다. 이로 인해 많은 식생이 소실되며, 그 강도와 발생 형태에 따라 생태계 변화에 영향을 끼친다. 생태계 변화는 다시 산불 발생을 유발하여 2차 피해를 야기한다. 따라서 산불 피해지에 대한 정확한 탐지 및 면적 산정의 중요성이 지속적으로 제기되고 있다. 효율적인 산불 피해지 모니터링을 위해 산불 발생 후 실시간 지형 및 기상정보는 물론 피해지역의 영상을 대규모로 취득할 수 있는 위성영상이 주로 활용되고 있다. 최근, 합성곱 신경망(convolution neural network, CNN) 기반 모델부터 고성능 트랜스포머(Transformer) 기반 모델에 이르기까지 딥러닝 알고리즘이 빠르게 발전하면서 산림원격탐사에서 이를 적용한 연구가 활발히 이루어지고 있다. 하지만 현재까지 적용된 딥러닝 모델은 제한적이며 현업에서의 합리적인 활용을 위한 정량적 성능평가에 대한 보고가 부족한 상황이다. 따라서 본 연구에서는 모델에 따른 성능향상과 데이터 설계에 따른 성능향상을 중점적으로 비교 분석하였다. 미국 캘리포니아 지역을 대상으로 CNN 기반 모델의 U-Net, High Resolution Network-Object Contextual Representation (HRNet-OCR)을 활용하여 산불 피해지 모델을 구축하였다. 또한, 기본 파장대역과 함께 식생활력도 및 지표의 수분함량 정도를 고려하고자 normalized difference vegetation index (NDVI), normalized burn ratio (NBR)와 같은 산불 관련 분광지수를 산출하여 입력 이미지로 사용하였다. U-Net의 mean intersection over union (mIoU)이 0.831, HRNet-OCR이 0.848을 기록하여 두 모델 모두 우수한 영상분할 성능을 보였다. 또한, 밴드 반사도뿐 아니라 분광지수를 추가한 결과 모든 조합에서 평가지표 값이 상승하여 분광지수를 활용한 입력 데이터 확장이 픽셀 세분화에 기여함을 확인하였다. 이와 같은 딥러닝 방법론을 발전시킨다면 우리나라의 산불 피해지에 대한 신속한 파악 및 복구 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.
혁신과 창의성이 점차 중요해지는 오늘날 인적자원에 대한 관리는 기업의 성과와 경쟁적 우위를 위한 핵심요인이다. 이에 기업은 목표달성과 조직성과 제고를 위해 구성원을 대상으로 다양한 유형의 지원방식을 시행·도입하고 있다. 기업이 가진 조직문화와 조직 신뢰는 구성원의 인지적·정서적 상태에 영향을 미치며 나아가 직무 스트레스, 직무 만족과 같은 조직성과에 변화를 가져올 수 있다. 또한, 제도적인 관점에서 일과 삶의 균형 역시 조직성과에 영향을 미치는 주요 요인으로서, 일과 삶의 불균형은 사기저하, 직무에 대한 불만족 등 조직성과 하락을 초래한다. 일과 삶의 균형과 관련하여 저출산 문제가 심화되며 중요성이 대두되기 시작하였다. 이에 정부는 근로자들의 일과 삶의 균형을 위해 다양한 정책적 지원을 시행하였으며, '주 52시간 근무제'가 대표적인 예에 해당한다. 이에 본 연구는 경쟁가치모형을 적용한 기업의 조직문화가 근로자들의 직무 스트레스 미치는 영향 관계에 대해 분석하고, 주당 초과근로시간, 조직 신뢰가 가지는 매개효과를 분석하였다. 직무 스트레스는 직무 몰입, 직무 만족, 이직의도에 영향을 미치는 전제에 해당한다. 그러나 기존 연구의 경우 직무 스트레스를 조직성과로 측정한 연구는 미비한 실정이다. 더하여 초과근로시간과 조직성과 관계를 분석한 연구가 드물다는 점을 고려했을 때 영향 관계를 파악할 필요가 있다. 따라서 본 연구에서 설정한 가설을 검증하기 위해 ?인적자본기업패널(HCCP)근로자?-(2021년) 데이터를 활용하여 자료를 수집한 후 구조방정식모형(SEM)을 사용하였다. 연구결과는 다음과 같다. 첫째, 위계 지향적인 기업의 조직문화는 근로자들의 직무스트레스를 증가시킨다. 반면 혁신지향, 관계지향, 경쟁지향적인 기업문화는 직무스트레스를 감소시킨다. 둘째, 위계 지향적인 문화는 조직에 대한 신뢰를 감소시켰으며, 이외의 조직문화는 조직에 대한 신뢰를 증가시킨다. 셋째, 관계지향적이며, 경쟁지향적인 기업의 조직문화는 주당 초과 근로시간 감소에 영향을 미쳤으며, 혁신지향적이며 위계지향적인 문화는 초과 근로시간을 증가시키는 것으로 나타났다. 넷째, 조직에 대한 신뢰와 주당 초과 근로시간은 기업의 조직문화와 직무스트레스를 매개하는 효과를 가지는 것으로 나타났다. 이러한 분석결과를 바탕으로 본 연구는 학문적 및 정잭척 시사점을 제시하였다.
전 지구적으로 기대수명 증가와 과학 기술의 비약적인 발전은 인구 고령화와 함께 에이징에 대한 패러다임을 변화시켰고, 세계 최하위 저출산 국가인 한국은 인구 자연 감소 시대와 초고령 사회라는 복합적인 인구구조의 격변으로 새로운 국가 위기와 국정과제 해결에 직면하였다. 즉 노인 인구의 급증과 핵심노동인력의 급감으로 돌봄 수급의 심각한 불균형은 노후 삶의 질(Quality of Life) 향상, 인간 존엄성(Dignity) 보전, 자립 생활(Independent Living) 유지를 위하여 혁신적인 접근을 요구하고 있다. 이에 4차 산업의 혁신 기술이 접목된 스마트 에이징이 지속가능한 삶의 가치를 실현시킬 수단으로 급부상하여 주목받고 있으나 학술적 정의나 사회적 합의의 부재 속에 관련 논의가 이어지고 있다. 이에 본 고에서는 통합적 문헌고찰과 개념 분석의 접근을 활용하여 스마트 에이징의 개념과 그 모형을 구성하고자 한다. 먼저 에이징의 점증적인 패러다임 변화 속에 등장한 스마트 에이징의 개념과 속성을 살펴보았고, 그 구성요소인 에이징 인 플레이스(Aging in Place), 웰 에이징(Well Aging), 액티브 에이징(Active Ageing)를 도출하여 각 요소별 특징을 검토하였다. 스마트 에이징의 첫 구성요소인 에이징 인 플레이스는 친숙한 지역사회 내의 거주 연속성에 초점을 두고 주거기반의 자립 생활, 사회적 교류의 지속, 자기결정권의 존중, 잔존 능력의 최대한 활용 등을 촉진하는 에이징 친화적인 환경의 조성을 의미한다. 웰 에이징은 삶의 질을 향상시키고자 신체적·정신적·사회적·영성적·경제적 조화로움, 균형적인 삶, 주관적인 행복을 중시하는 웰빙이 강조되는 반면 액티브 에이징은 적극적인 사회활동의 참여와 경제적인 노동활동의 참가를 통한 능동적 삶을 지향한다. 이러한 구성요소를 토대로 스마트 에이징의 전제 조건으로서 주거보장, 소득보장, 의료보장, 돌봄보장, 참여보장을 제안하며, 이들 구성요소와 전제조건은 상호연관성을 지니며 뉴노멀 시대의 지속가능한 삶의 질에 일조할 것이다. 아울러 사용자 친화적인 스마트 에이징을 구현하기 위한 생태계 구축과 함께 에이지-테크(Age-Tech) 산업의 육성과 동향 파악이 뒤따라야 할 것이다.
본 연구에서는 Sub ROI의 변화가 노출지수(exposure index; EI)에 미치는 영향을 알아보고, 임상에서 Sub ROI 변경 시 발생될 수 있는 EI값의 변화에 대한 지표를 제시하고자 한다. 본 연구는 복부 방사선검사와 유사한 설정을 위해, 아크릴 20 cm의 피사체를 대상으로 진행하였고, 아크릴 한 장의 제원은 20×20×5 cm이다. 조사조건은 80 kVp , 320 mA, 25 ms, SID 110 cm로 동일하게 적용하였으며, Sub ROI는 장비사에서 제공하는 5가지 type을 이용하여 각 type별 30개의 영상을 획득하였고, 장비에서 제공하는 EI값과 환자입사선량(entrance skin exposure; ESE)를 비교분석 하였다. Sub ROI 변화에 따른 EI의 평균값은 LS의 경우 101.18±0.27 이었으며, AEC는 106.57±0.31, VR은 107.74±0.39, HR은 107.90±0.38, SS는 109.72±0.32로 나타났다(p<0.01). Sub ROI 타입 별(LS, AEC, VR, HR, SS) ESE 평균값은 476.45±1.71 μGy, 476.92±1.48 μGy, 476.14±2.30 μGy, 475.61±1.96 μGy, 477.14±1.46 μGy로 측정되었고, 통계적으로 유의한 차이가 있었다(p<0.01). 본 연구결과 Sub ROI 타입에 따른 EI는 최소값을 나타낸 LS(109.72)를 기준으로, AEC는 5.3%, VR은 6.4%, HR은 6.6%, SS는 8.4% 증가하였으며, 평균적으로 5.3% 증가하였다. ESE의 평균값은 HR(475.61 μGy)타입이 최소값을 나타냈으며, 이를 기준으로 AEC는 0.27%, VR은 0.11%, LS는 0.17%, SS는 0.32% 증가하였고, 전체 적으로 약 0.17% 높아졌다.
기존 아민 수용액 기반 CO2 포집 공정을 산업적으로 적용할 경우 CO2 탈거 및 용매 재생에 따른 재생 에너지가 크다는 문제점을 갖고 있다. 본 논문은 CO2에 대한 높은 흡수 용량과 함께 흡수제에 포함된 물의 조성을 낮춤으로써 재생 에너지를 저감할 수 있는 저수계 흡수제를 제안하였다. 이를 위해 본 연구에서는 디아민인 MAPA (3-methylaminopropylamine)와 함께 물의 일부를 대신하여 물에 비해 CO2에 대한 물리적 용해도가 높고 비열이 낮은 NMP (N-methyl-2-pyrrolidone)를 흡수제에 도입하였다. 흡수제의 CO2에 대한 흡수 용량(αrich)과 순환 흡수 용량(Δα) 및 흡수 속도는 충전탑을 이용하여 측정하였다. 2.5M의 MAPA를 포함한 흡수제를 사용했을 경우 NMP가 10 wt% 포함된 경우에 최대 순환 흡수 용량을 얻을 수 있었다. 총괄물질전달 계수는 NMP의 농도가 증가함에 따라 증가하였다. 그러나 0.5보다 더 높은 CO2 로딩 값에서는 NMP의 농도 증가에 따른 물질전달 계수의 증가 폭이 줄어들었다. lean 로딩 값이 낮은 경우에는 점성에 의한 물질전달 저항이 낮아서 NMP 첨가에 따라 총괄 물질전달 계수가 증가하나 로딩 값이 증가함에 따라 흡수제의 점도가 증가하면서 CO2와 MAPA의 확산도가 낮아지며 이에 따라 총괄 물질전달계수가 급격히 감소하였다.
산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.
도심지는 개별 건물단위의 소규모 변화가 빈번하게 발생하는 지역이다. 기 구축된 건물 데이터베이스는 그 활용도를 높이기 위해 도심지 내의 주기적인 갱신이 요구된다. 그러나 광범위한 도심지에 대한 건물 단위 변화를 관측하기에는 자료수집의 한계가 존재한다. 따라서 본 연구에서는 넓은 범위를 단일 영상으로 촬영 가능한 위성영상을 활용하여 건물변화 탐지와 건물 정보의 갱신 가능성을 확인하고자 한다. 이를 위해 먼저 건물 데이터베이스에서 제공하는 건물 모서리점의 3차원 좌표를 이용하여 위성영상에 건물 영역을 투영한다. 투영된 건물 영역을 다시 지붕 및 전면 영역으로 구분한다. 투영된 지붕영역의 화소값을 비교하여 건물높이 갱신, 건물멸실 등 건물변화 여부를 탐지한다. 건물높이 갱신은 영상에 투영된 지붕면이 실제 영상에서 관측되는 지붕면과 일치할 때까지 높이값을 조절하여 수행된다. 영상에 투영된 모습은 나타나나 관측되는 건물이 없는 경우 철거된 건물에 해당한다. 영상에서 관측되는 건물 중에서 지붕면과 전면영역이 투영되지 않은 건물은 신축 건물에 해당된다. 이러한 변화탐지 결과를 바탕으로 건물 데이터베이스를 높이갱신, 건물삭제 및 건물생성의 세가지 분류로 갱신한다. 제안된 방식은 인천지역을 촬영한 아리랑 3A호와 인천광역시 건물 데이터베이스를 사용하여 실험하였다. 입력 단일 위성영상을 이용하여 건물변화를 탐지하고, 갱신이 필요한 건물에 대해 건물 데이터베이스 편집 작업을 수행하였다. 갱신된 건물 정보를 검증하고자 이를 이용하여 다른 아리랑 3A호 영상에 건물영역을 투영하였다. 실험결과, 갱신된 건물정보로부터 투영된 건물영역은 영상에서 관측된 건물영역과 잘 일치하였다. 이를 통해서 단일 위성영상을 이용한 건물변화탐지 및 건물 데이터베이스 갱신 가능성을 확인하였다. 후속 연구로 제안방식의 자동처리기술 개발을 수행할 예정이다.
도시 수목은 탄소를 저장하고 불투수면적을 감소시키는 도시 생태계의 중요 요소이며, 탄소 저장량 및 순환량 산정 시 주요 정보로 활용될 수 있다. 많은 선행 연구에서 항공 라이다 자료 및 인공지능 기법을 활용하여 고해상도 수목 정보를 산출하고 있으나, 항공 라이다 영상은 제공하는 플랫폼이 제한되어 있으며 비용적인 면에서도 한계가 다수 존재한다. 따라서 본 연구에서는 수원시를 대상으로 자료 취득이 용이한 고해상도 위성 영상인 Sentinel-2를 활용하여 기계학습 기반의 도시 내 수목 피복률(fractional tree canopy cover, FTC)을 추정하고자 하였다. Sentinel-2 시계열 영상으로부터 중앙값 합성을 수행하여 수원시 전역에 대한 단일 영상을 제작하여 활용하였다. 도시 내 토지 피복의 이질성을 반영하기 위하여, 30 m 격자내 10 m 해상도의 광학 지수의 평균 및 표준편차 값과 환경부 세분류 토지 피복 지도 기반 항목별 피복률을 계산하여 기계학습 모델의 입력 변수로 활용하였다. 총 4가지의 입력 변수 조합을 설정하여, 입력 변수 구성에 따른 FTC 추정 정확도를 비교 및 평가하였다. 광학 영상의 평균 정보만을 활용(Scheme 1)했을 때 보다 도시 내 이질적인 특성을 반영할 수 있는 표준 편차 및 피복률 정보를 모두 함께 고려(Scheme 4, S4)했을 때 향상된 성능을 나타낼 수 있었다. 검증용 자료에 대해 S4의 Random Forest (RF) 모델이 0.8196의 R2, 0.0749의 mean absolute error (MAE), 및 0.1022의 root mean squared error (RMSE)로 전체 기계학습 모델 중에서 성능이 가장 높게 나타났다. 변수 기여도 분석 결과 광학 지수의 표준 편차 정보는 도시 내 복잡한 토지 피복 지역에 대해 높은 기여도를 나타내었다. 훈련된 S4 구성의 RF 모델을 수원시 전역에 대해 확장 적용하였을 때, 참조 FTC 자료에 대해 0.8702의 R2, 0.0873의 MAE, 및 0.1335의 RMSE의 우수한 성능을 나타냈다. 본 연구의 FTC 추정 기법은 향후 다른 지역에 대한 적용성이 우수할 것으로 판단되며, 도시 생태계 탄소순환 파악의 기초자료로 활용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.