• Title/Summary/Keyword: values$

Search Result 60,156, Processing Time 0.085 seconds

Accuracy of implant digital scans with different intraoral scanbody shapes and library merging according to different oral exposure height (구내 스캔바디의 형태에 따른 임플란트의 디지털 스캔 정확도 및 구강 내 노출 높이에 따른 라이브러리 중첩 정확도 비교 연구)

  • Jeong, Byungjoon;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • Purpose: The purpose of this study is to compare the accuracy of digital scans of implants according to different shapes of scanbodies, and to compare the accuracy of library merging according to different oral exposure height. Materials and methods: A master model with a single tooth edentulous site was prepared. For the first experiment, three types of intraoral scanbodies were prepared, divided into three groups, and the following experiments were conducted for each group: An internal hex implant was placed. The master model with the scanbody connected was scanned with a model scanner, and a master reference file (control group) was created. 10 files (experimental group) were created by performing 10 consecutive scans with an intraoral scanner. After superimposing the control and experimental groups, the following values were calculated: 1) Distance deviation of a designated point on the scanbody 2) Angle deviation of the major axis of the scanbody. For the second experiment, the scanbody scan data were prepared in 6 different heights. Library files were merged with each of the scan data. The distance and angular deviation were calculated using the 7 mm scan data as control group. Results: In the first experiment, there were no significant differences between A and B (P=.278), B and C (P=.568), and C and A (P=.711) in the distance deviations. There were no significant differences between A and B (P=.568), B and C (P=.546), and C and A (P=.112) in the angular deviations. Also, the scanbody showed significantly higher library merging accuracy in the groups with high oral exposure height (P<.5). Conclusion: There were no significant differences in scan accuracy according to the different shapes of scanbodies, and the accuracy of library merging increased according to exposure height of the scanbody in the oral cavity.

Growth Characteristics of Ligusticum chuanxing Hort. according to Soil and Meteorological Environment by Each Cultivation (재배지별 토양 및 기상환경에 따른 토천궁의 생육특성)

  • Jeong, Dae Hui;Kim, Ki Yoon;Park, Hong Woo;Jung, Chung Ryul;Kim, Hyun Jun;Jeon, Kwon Seok
    • Korean Journal of Plant Resources
    • /
    • v.34 no.1
    • /
    • pp.64-72
    • /
    • 2021
  • This study aimed to identify regions with a suitable growth environment for Ligusticum chuanxing Hort. and use basic data to identify appropriate cultivation and stable production strategies. Four main areas of cultivation were selected and the relationship between growth characteristics (aboveground and underground parts) and weather and soil environment was analyzed. Overall growth was found to be significantly higher in Pyeongchang. Atmospheric and soil temperatures showed a significant negative correlation with overall height from the ground, stem diameter, and growth characteristics of the underground part; leaf length and width were positively correlated. As insolation increased, the growth characteristics, excluding leaf size, showed a positive correlation. Soil characteristics such as organic matter (OM), N, P, and K showed negative correlations with the overall height of the upper part and growth characteristics of the underground part, including stem diameter. Analysis of roots indicated that OM, N, P, and K were essential and were absorbed through the soil. The OM, N, P, and K values in the Pyeongchang area, which showed the optimal growth, were lower than those in other areas. It is believed that these results can be used to select cultivation sites for L. chuanxing and establish cultivation technology in future.

Determination of Freely Dissolved PAHs in Seawater around the Korean Peninsula Using High Speed Rotation-Type Passive Sampling Device (고속회전식 수동형 채집 장치를 이용한 한반도 주변해역에서의 자유용존상 PAHs 측정)

  • JANG, YU LEE;LEE, HYO JIN;JEONG, HAEJIN;JEONG, DA YEONG;KIM, NA YEONG;KIM, GI BEUM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.37-48
    • /
    • 2021
  • A new high speed rotation type-passive sampling device (HSR-PSD), which can rotate seawater at high speed and absorb easily and quickly the freely dissolved hydrophobic organic contaminants from seawater, was developed and then applied around the Korean Peninsula. Freely dissolved concentrations (Cfree) of polycyclic aromatic hydrocarbons (PAHs) were determined using the HSR-PSD with low density polyethylene (LDPE) sheets as a passive sampler. Furthermore, dissolved concentrations (Cdissolved) of PAHs in seawater were also obtained from high volume water sampling as a conventional method to account for actual bioavailability. When the LDPE sheets were rotated in the HSR-PSD at 900 rpm, PAHs with log KOW 3.4 ~ 5.2 were equilibrated between the LDPE and water in 5 hours. Although the high molecular weight PAHs with log KOW 5.6 ~ 6.8 was expected to be 2 to 30 days to reach the equilibrium, the Cfree of the PAHs at equilibrium could be corrected using performance reference compounds in 5 hours. Meanwhile, the total Cfree of PAHs were from 0.32 to 1.2 ng/L, which were higher than reported values in other oceans, but lower than in coastal water such as estuary, harbor, or shore. A bioavailability from the detected PAHs was highest at the sampling line near the dumping site of the Yellow Sea. Predicted residual concentrations in biota were relatively higher in offshore including the dumping site than in coastal regions.

Development and Validation of Analytical Method and Antioxidant Effect for Berberine and Palmatine in P.amurense (황백의 지표성분 berberine과 palmatine의 분석법 개발과 검증 및 항산화 효능 평가)

  • Jang, Gill-Woong;Choi, Sun-Il;Han, Xionggao;Men, Xiao;Kwon, Hee-Yeon;Choi, Ye-Eun;Park, Byung-Woo;Kim, Jeong-Jin;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.544-551
    • /
    • 2020
  • The aim of this study was to develop and validate a simultaneous analytical method for berberine and palmatine, which are representative substances of Phellodendron amurense, and to evaluate the antioxidant activity. We evaluated the specificity, linearity, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ) of analytical methods for berberine and palmatine using high-performance liquid chromatography. Our result showed that the correlation coefficients of the calibration curve for berberine and palmatine exhibited 0.9999. The LODs for berberine and palmatine were 0.32 to 0.35 µg/mL and the LOQs were 0.97 to 1.06 µg/mL, respectively. The inter-day and intra-day precision values for berberine and palmatine were from 0.12 to 1.93 and 0.19 to 2.89%, respectively. The inter-day and intra-day accuracies were 98.43-101.45% and 92.39-100.60%, respectively. In addition, the simultaneous analytical method was validated for the detection of berberine and palmatine. Moreover, we conducted FRAP and NaNO2 scavenging activity assays to measure the antioxidant activities of berberine and palmatine, and both showed antioxidant activity. These results suggest that P.amurense could be a potential natural resource for antioxidant activity and that the efficacy can be confirmed by investigating the content of the berberine and palmatine.

Trends in QA/QC of Phytoplankton Data for Marine Ecosystem Monitoring (해양생태계 모니터링을 위한 식물플랑크톤 자료의 정도 관리 동향)

  • YIH, WONHO;PARK, JONG WOO;SEONG, KYEONG AH;PARK, JONG-GYU;YOO, YEONG DU;KIM, HYUNG SEOP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.3
    • /
    • pp.220-237
    • /
    • 2021
  • Since the functional importance of marine phytoplankton was firstly advocated from early 1880s massive data on the species composition and abundance were produced by classical microscopic observation and the advanced auto-imaging technologies. Recently, pigment composition resulted from direct chemical analysis of phytoplankton samples or indirect remote sensing could be used for the group-specific quantification, which leads us to more diversified data production methods and for more improved spatiotemporal accessibilities to the target data-gathering points. In quite a few cases of many long-term marine ecosystem monitoring programs the phytoplankton species composition and abundance was included as a basic monitoring item. The phytoplankton data could be utilized as a crucial evidence for the long-term change in phytoplankton community structure and ecological functioning at the monitoring stations. Usability of the phytoplankton data sometimes is restricted by the differences in data producers throughout the whole monitoring period. Methods for sample treatments, analyses, and species identification of the phytoplankton species could be inconsistent among the different data producers and the monitoring years. In-depth study to determine the precise quantitative values of the phytoplankton species composition and abundance might be begun by Victor Hensen in late 1880s. International discussion on the quality assurance of the marine phytoplankton data began in 1969 by the SCOR Working Group 33 of ICSU. Final report of the Working group in 1974 (UNESCO Technical Papers in Marine Science 18) was later revised and published as the UNESCO Monographs on oceanographic methodology 6. The BEQUALM project, the former body of IPI (International Phytoplankton Intercomparison) for marine phytoplankton data QA/QC under ISO standard, was initiated in late 1990. The IPI is promoting international collaboration for all the participating countries to apply the QA/QC standard established from the 20 years long experience and practices. In Korea, however, such a QA/QC standard for marine phytoplankton species composition and abundance data is not well established by law, whereas that for marine chemical data from measurements and analysis has been already set up and managed. The first priority might be to establish a QA/QC standard system for species composition and abundance data of marine phytoplankton, then to be extended to other functional groups at the higher consumer level of marine food webs.

Differences in Seed Vigor, Early Growth, and Secondary Compounds in Hulled and Dehulled Barley, Malting Barley, and Naked Oat Collected from Various Areas (맥종별 주산지와 재배한계지 수집종자의 활력, 초기생장 및 이차화합물 차이)

  • Park, Hyung Hwa;Kuk, Yong In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.2
    • /
    • pp.171-181
    • /
    • 2021
  • The purposes of this study were to determine how changes in temperature affect germination rates and growth of hulled and dehulled barley, malting barley, and naked oat plants, and to measure chlorophyll content, photosynthetic efficiency, and secondary compounds (total phenol, total flavonoid, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity) in plants grown at 13℃ or 25℃). Various types of barley seeds were collected from areas with ideal conditions for barley cultivation, hereinafter referred to as IA, and also from areas where barley cultivation is more difficult due to lower temperatures, hereinafter referred to as LTA. Seeds were tested for seed vigor. While there were significant differences in the electrical conductivity values between seeds collected from certain specific areas, no significant differences were evident between IA and LTA seeds, regardless of the type of barley seed. When plants were grown at 25℃, there were no significant differences in germination rates, plant height, root length and shoot fresh weight between plants originating from IA and LTA. However, there were differences in the measured parameters of some specific seeds. Similarly, under the low temperature condition of 13℃, no differences in the emergence rate, plant height, and shoot fresh weight were evident between plants originating from IA or LTA, regardless of the type of barley. However, there were differences between some specific seeds. One parameter that did vary significantly was the emergence date. Hulled barley and malting barley emerged 5 days after sowing, whereas naked oats emerged 7 days after sowing. There were no differences in the chlorophyll content and photosynthetic efficacy, regardless of the type of barley. There were no significant differences in total phenol, total flavonoid content, and DPPH radical scavenging activity between plants originating from IA and LTA, regardless of the type of barley. However, there were differences between some specific seeds. In particular, for malting barley the total flavonoid content differed in the order of Gangjin > Changwon > Haenam = Jeonju > Naju. The results indicate that crop growth, yield and content of secondary compounds in various types of barley may be affected by climate change.

Effect of Summer Sea Level Rise on Storm Surge Analysis (하계 해수면 상승이 폭풍해일고 분석에 미치는 영향)

  • Kim, A Jeong;Lee, Myeong Hee;Suh, Seung Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.298-307
    • /
    • 2021
  • Typhoons occur intensively between July and October, and the sea level is the highest during this time. In particular, the mean sea level in summer in Korea is higher than the annual mean sea level about 14.5cm in the west coast, 9.0 to 14.5cm in the south coast, and about 9.0 cm in the east coast. When the rising the sea level and a large typhoon overlap in summer, it can cause surges and flooding in low-lying coastal areas. Therefore, accurate calculation of the surge height is essential when designing coastal structures and assessing stability in order to reduce coastal hazards on the lowlands. In this study, the typhoon surge heights considering the summer mean sea level rise (SH_m) was calculated, and the validity of the analysis of abnormal phenomena was reviewed by comparing it with the existing surge height considering the annual mean sea level (SH_a). As a result of the re-analyzed study of typhoon surge heights for BOLAVEN (SANBA), which influenced in August and September during the summer sea level rise periods, yielded the differences of surge heights (cm) between SH_a and SH_m 7.8~24.5 (23.6~34.5) for the directly affected zone of south-west (south-east) coasts, while for the indirect southeast (south-west) coasts showed -1.0~0.0 (8.3~12.2), respectively. Whilst the differences between SH_a and SH_m of typhoons CHABA (KONG-REY) occurred in October showed remarkably lessened values as 5.2~ 14.2 (19.8~21.6) for the directly affected south-east coasts and 3.2~6.3 (-3.2~3.7) for the indirectly influenced west coast, respectively. The results show the SH_a does not take into account the increased summer mean sea level, so it is evaluated that it is overestimated compared to the surge height that occurs during an actual typhoon. Therefore, it is judged that it is necessary to re-discuss the feasibility of the surge height standard design based on the existing annual mean sea level, along with the accurate establishment of the concept of surge height.

Estimation of irrigation return flow from paddy fields on agricultural watersheds (농업유역의 논 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;An, Hyun-Uk;Kim, Jonggun;Shin, Yongchul;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Irrigation water supplied to the paddy field is consumed in the amount of evapotranspiration, underground infiltration, and natural and artificial drainage from the paddy field. Irrigation return flow is defined as the excess of irrigation water that is not consumed by evapotranspiration and crop, and which returns to an aquifer by infiltration or drainage. The research on estimating the return flow play an important part in water circulation management of agricultural watershed. However, the return flow rate calculations are needs because the result of calculating return flow is different depending on irrigation channel water loss, analysis methods, and local characteristics. In this study, the irrigation return flow rate of agricultural watershed was estimated using the monitoring and SWMM (Storm Water Management Model) modeling from 2017 to 2020 for the Heungeop reservoir located in Wonju, Gangwon-do. SWMM modeling was performed by weather data and observation data, water of supply and drainage were estimated as the result of SWMM model analysis. The applicability of the SWMM model was verified using RMSE and R-square values. The result of analysis from 2017 to 2020, the average annual quick return flow rate was 53.1%. Based on these results, the analysis of water circulation characteristics can perform, it can be provided as basic data for integrated water management.

Effects of Forage-Rice Cropping Systems on the Growth and Grain Quality of Early Maturing Rice Cultivars and Soil Chemical Properties in Paddy Fields in Southern Korea (사료작물-벼 작부체계가 조생종 벼의 생육과 미질 특성 및 토양의 화학적 특성에 미치는 영향)

  • Oh, Seo Young;Oh, Seong Hwan;Seo, Jong Ho;Choi, Jisu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.297-306
    • /
    • 2021
  • To select rice (Oryza sativa L.) cultivars suitable for forage-rice double cropping system, the growth and grain quality of four early maturing rice cultivars (Joun, Jopyeong, Haedamssal, and Unkwang), and the chemical properties of soils were investigated under single- (fallow-rice) and forage-rice double-cropping systems in paddy fields in Miryang, southern Korea. The soil where two forage crops [Italian ryegrass (Lolium multiflorum Lam.) and oat (Avena sativa L.)] were cultivated during winter had a slightly lower pH; an increase in total nitrogen (T-N), K, Ca, and Na contents; and a slight decrease in organic matter and available P2O5 contents, compared with the soil fallowed during winter. This shows that the chemical properties of paddy soils can be improved by winter forage cropping. At the heading stage, the culm length, panicle length, panicle number, and leaf color of all cultivars, except for Haedamssal, were generally higher under double-cropping than under single-cropping. For Haedamssal, the culm length and leaf color did not differ between the cropping systems, but the panicle length was slightly shortened and its panicle number increased under double-cropping. After harvest, the yield of milled rice decreased for all cultivars except Haedamssal, but increased in Haedamssal under double-cropping. The head rice rate was slightly higher under double cropping, particularly in Jopyeong and Haedamssal, than under single-cropping. The protein content of milled rice under double cropping was higher and its amylose content was similar or slightly lower compared to those of rice under single cropping, resulting in decreased Toyo values for rice under double-cropping. The pasting temperature did not differ significantly between the cropping systems. However, Haedamssal had a low pasting temperature but a high Toyo value under double cropping, compared to the other three cultivars, suggesting that its palatability is relatively high. Furthermore, panicle number increased and milled rice yield did not decrease, even under double cropping. Therefore, Haedamssal seems to be the best cultivar for paddy-based double cropping with forage crops.

Changes in Growth and Yield of Different Rice Varieties under Different Planting Densities in Low-Density Transplanting Cultivation (벼 드문모심기 재식밀도에 따른 품종별 생육 및 수량 변이)

  • Yang, SeoYeong;Hwang, WoonHa;Jeong, JaeHyeok;Lee, HyeonSeok;Lee, ChungGeun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.279-288
    • /
    • 2021
  • Low-density transplanting is a cultivation technology that reduces labor and production costs. In this study, the growth and yield of several varieties with different tillering characteristics were analyzed in order to establish an appropriate planting density for low-density transplanting. Varieties with Low-Tillering (LT), Medium-Tillering (MT), and High-Tillering (HT) were planted at a density of 37-80 hills/3.3 m2. As the planting density decreased, the number of tillers per hill increased, but the number of tillers per square meter of hill decreased, especially for the LT variety. Decreasing density extended the tillering stage, which was longest in the LT variety. As the planting density decreased, SPAD(Soil plant analysis development, chlorophyll meter) values just before heading increased while canopy light interception decreased. Such changes were much greater in the LT variety than in the MT and HT varieties. The heading date tended to be delayed by 0-2 days as the planting density decreased, and there was no difference in the length of the period from first heading to full heading. As the number of spikelets per panicle increased, the number of spikelets per square meter did not differ according to the planting density. Decreasing planting density did not affect the grain weight; nevertheless, the yield ultimately decreased because of the decreasing ripening rate. The optimal planting density for stable low-density transplanting cultivation was determined to be over 50 hills/3.3 m2. In addition, these results suggest that LT varieties should be avoided, since these showed large decreases in growth and yield with decreasing planting density.