• Title/Summary/Keyword: value prediction

Search Result 2,422, Processing Time 0.034 seconds

Prediction Method for the Implicit Interpersonal Trust Between Facebook Users (페이스북 사용자간 내재된 신뢰수준 예측 방법)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.2
    • /
    • pp.177-191
    • /
    • 2013
  • Social network has been expected to increase the value of social capital through online user interactions which remove geographical boundary. However, online users in social networks face challenges of assessing whether the anonymous user and his/her providing information are reliable or not because of limited experiences with a small number of users. Therefore. it is vital to provide a successful trust model which builds and maintains a web of trust. This study aims to propose a prediction method for the interpersonal trust which measures the level of trust about information provider in Facebook. To develop the prediction method. we first investigated behavioral research for trust in social science and extracted 5 antecedents of trust : lenience, ability, steadiness, intimacy, and similarity. Then we measured the antecedents from the history of interactive behavior and built prediction models using the two decision trees and a computational model. We also applied the proposed method to predict interpersonal trust between Facebook users and evaluated the prediction accuracy. The predicted trust metric has dynamic feature which can be adjusted over time according to the interaction between two users.

Defect Severity-based Defect Prediction Model using CL

  • Lee, Na-Young;Kwon, Ki-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.81-86
    • /
    • 2018
  • Software defect severity is very important in projects with limited historical data or new projects. But general software defect prediction is very difficult to collect the label information of the training set and cross-project defect prediction must have a lot of data. In this paper, an unclassified data set with defect severity is clustered according to the distribution ratio. And defect severity-based prediction model is proposed by way of labeling. Proposed model is applied CLAMI in JM1, PC4 with the least ambiguity of defect severity-based NASA dataset. And it is evaluated the value of ACC compared to original data. In this study experiment result, proposed model is improved JM1 0.15 (15%), PC4 0.12(12%) than existing defect severity-based prediction models.

Feature Selection Effect of Classification Tree Using Feature Importance : Case of Credit Card Customer Churn Prediction (특성중요도를 활용한 분류나무의 입력특성 선택효과 : 신용카드 고객이탈 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis, a model can be constructed with various machine learning algorithms, including decision tree. And feature importance has been utilized in selecting better input features that can improve performance of data analysis models for several application areas. In this paper, a method of utilizing feature importance calculated from the MDI method and its effects are investigated in the credit card customer churn prediction problem with classification trees. Compared with several random feature selections from case data, a set of input features selected from higher value of feature importance shows higher predictive power. It can be an efficient method for classifying and choosing input features necessary for improving prediction performance. The method organized in this paper can be an alternative to the selection of input features using feature importance in composing and using classification trees, including credit card customer churn prediction.

Prediction Technology of Reverse Setting Block Shape with Inherent Strain Method and Re-meshing Technology (고유 변형도법과 리메슁 기술을 접목한 블록의 역세팅 형상 예측기술)

  • Hyun, Chung-Min;Choi, Han-Suk;Park, Chang-Woo;Kim, Sung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.425-430
    • /
    • 2017
  • In order to reduce the cost of corrections and time needed for the block assembly process, the reverse setting method is applied for a back-heated block to neutralize deck deformation. The proper reverse setting shape for a back-heated block to correct deformation improved the deck flatness, but an excessive amount of reverse setting could inversely affect the flatness of the block. A prediction method was developed for the proper reverse setting shape using a back-heated block, considering the complex geometry of blocks, thickness of the deck plate, and thermal loading conditions such as welding and back-heating. The prediction method was developed by combining the re-meshing technique and inherent strain-based deformation analysis using the finite element method. Because the flatness deviation was decreased until the lower critical point and thereafter it tended to increase again, the optimum value for which the flatness was the best case was selected by repeatedly calculating the predefined reverse setting values. Based on this analysis and the study of the back-heating deformation of large assembly blocks, including the reverse setting shape, the mechanism for selecting the optimum reverse setting value was identified. The developed method was applied to the actual blocks of a ship, and it was confirmed that the flatness of the block was improved. It is concluded that the developed prediction method can be used to predict the optimum reverse setting shape value of a ship's block, which will reduce the cost of corrections in the construction stage.

Resource Prediction Technique based on Expected Value in Cloud Computing (클라우드 환경에서 기대 값 기반의 동적 자원 예측 기법)

  • Choi, Yeongho;Lim, Yujin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.3
    • /
    • pp.81-84
    • /
    • 2015
  • Cloud service is one of major technologies in modern IT business. Due to the dynamics of user demands, service providers need VM(Virtual Machine) provisioning mechanism to predict the amount of resources demanded by cloud users for the next service and to prepare the resources. VM provisioning provides the QoS to cloud user and maximize the revenue of a service provider by minimizing the expense. In this paper, we propose a new VM provisioning technique to minimize the total expense of a service provider by minimizing the expected value of the expense based on the predicted demands of users. To evaluate the effectiveness of our prediction technique, we compare the total expense of our technique with these of the other prediction techniques with a series of real trace data.

Production of agricultural weather information by Deep Learning (심층신경망을 이용한 농업기상 정보 생산방법)

  • Yang, Miyeon;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.293-299
    • /
    • 2018
  • The weather has a lot of influence on the cultivation of crops. Weather information on agricultural crop cultivation areas is indispensable for efficient cultivation and management of agricultural crops. Despite the high demand for agricultural weather, research on this is in short supply. In this research, we deal with the production method of agricultural weather in Jeollanam-do, which is the main production area of onions through GloSea5 and deep learning. A deep neural network model using the sliding window method was used and utilized to train daily weather prediction for predicting the agricultural weather. RMSE and MAE are used for evaluating the accuracy of the model. The accuracy improves as the learning period increases, so we compare the prediction performance according to the learning period and the prediction period. As a result of the analysis, although the learning period and the prediction period are similar, there was a limit to reflect the trend according to the seasonal change. a modified deep layer neural network model was presented, that applying the difference between the predicted value and the observed value to the next day predicted value.

Development of ensemble machine learning model considering the characteristics of input variables and the interpretation of model performance using explainable artificial intelligence (수질자료의 특성을 고려한 앙상블 머신러닝 모형 구축 및 설명가능한 인공지능을 이용한 모형결과 해석에 대한 연구)

  • Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In this study, XGBoost(XGB), an ensemble machine learning algorithm, was used to develop a model to predict Chl-a in a reservoir. The daily observation of water quality data and climate data was used for the training and testing of the model. In the first step of the study, the input variables were clustered into two groups(low and high value groups) based on the observed value of water temperature(TEMP), total organic carbon concentration(TOC), total nitrogen concentration(TN) and total phosphorus concentration(TP). For each of the four water quality items, two XGB models were developed using only the data in each clustered group(Model 1). The results were compared to the prediction of an XGB model developed by using the entire data before clustering(Model 2). The model performance was evaluated using three indices including root mean squared error-observation standard deviation ratio(RSR). The model performance was improved using Model 1 for TEMP, TN, TP as the RSR of each model was 0.503, 0.477 and 0.493, respectively, while the RSR of Model 2 was 0.521. On the other hand, Model 2 shows better performance than Model 1 for TOC, where the RSR was 0.532. Explainable artificial intelligence(XAI) is an ongoing field of research in machine learning study. Shapley value analysis, a novel XAI algorithm, was also used for the quantitative interpretation of the XGB model performance developed in this study.

A Study on the Prediction of Cabbage Price Using Ensemble Voting Techniques (앙상블 Voting 기법을 활용한 배추 가격 예측에 관한 연구)

  • Lee, Chang-Min;Song, Sung-Kwang;Chung, Sung-Wook
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • Vegetables such as cabbage are greatly affected by natural disasters, so price fluctuations increase due to disasters such as heavy rain and disease, which affects the farm economy. Various efforts have been made to predict the price of agricultural products to solve this problem, but it is difficult to predict extreme price prediction fluctuations. In this study, cabbage prices were analyzed using the ensemble Voting technique, a method of determining the final prediction results through various classifiers by combining a single classifier. In addition, the results were compared with LSTM, a time series analysis method, and XGBoost and RandomForest, a boosting technique. Daily data was used for price data, and weather information and price index that affect cabbage prices were used. As a result of the study, the RMSE value showing the difference between the actual value and the predicted value is about 236. It is expected that this study can be used to select other time series analysis research models such as predicting agricultural product prices

Cryptocurrency Auto-trading Program Development Using Prophet Algorithm (Prophet 알고리즘을 활용한 가상화폐의 자동 매매 프로그램 개발)

  • Hyun-Sun Kim;Jae Joon Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.105-111
    • /
    • 2023
  • Recently, research on prediction algorithms using deep learning has been actively conducted. In addition, algorithmic trading (auto-trading) based on predictive power of artificial intelligence is also becoming one of the main investment methods in stock trading field, building its own history. Since the possibility of human error is blocked at source and traded mechanically according to the conditions, it is likely to be more profitable than humans in the long run. In particular, for the virtual currency market at least for now, unlike stocks, it is not possible to evaluate the intrinsic value of each cryptocurrencies. So it is far effective to approach them with technical analysis and cryptocurrency market might be the field that the performance of algorithmic trading can be maximized. Currently, the most commonly used artificial intelligence method for financial time series data analysis and forecasting is Long short-term memory(LSTM). However, even t4he LSTM also has deficiencies which constrain its widespread use. Therefore, many improvements are needed in the design of forecasting and investment algorithms in order to increase its utilization in actual investment situations. Meanwhile, Prophet, an artificial intelligence algorithm developed by Facebook (META) in 2017, is used to predict stock and cryptocurrency prices with high prediction accuracy. In particular, it is evaluated that Prophet predicts the price of virtual currencies better than that of stocks. In this study, we aim to show Prophet's virtual currency price prediction accuracy is higher than existing deep learning-based time series prediction method. In addition, we execute mock investment with Prophet predicted value. Evaluating the final value at the end of the investment, most of tested coins exceeded the initial investment recording a positive profit. In future research, we continue to test other coins to determine whether there is a significant difference in the predictive power by coin and therefore can establish investment strategies.

The Effects of Housing Values on Housing Satisfaction Model (주거만족도 모델에서의 주거가치의 역할 연구)

  • 양세화
    • Journal of the Korean housing association
    • /
    • v.7 no.2
    • /
    • pp.1-7
    • /
    • 1996
  • This study was designed to examine the effects of housing values on housing satisfaction model. The empirical model of this study was based on the Goulart(1982). Data were collected through questionnaire survey, and the sample consisted of 285 households in Kimhae. Housing values were grouped into four clusters : the health and convenience value, the personal and social value, the location value, and the economic value. The major findings were that 1) the concordance between values and the actual housing conditions contributes significantly to the prediction of housing astisfaction, and 2) the control variables including sociodemographic and economic characteristics and housing values themselves did not directly influence on housing satisfaction.

  • PDF