• Title/Summary/Keyword: valuable materials

Search Result 750, Processing Time 0.028 seconds

Selective Leaching Process of Precious Metals (Au, Ag, etc.) from Waste Printed Circuit Boards (PCBs) (廢 PCBs부터 귀금속(Au, Ag 등)의 선택적 침출공정)

  • 오치정;이성오;국남표;김주환;김명준
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.29-35
    • /
    • 2001
  • This study was carried out to recover gold, silver and valuable metals from the printed circuit boards (PCBs) of waste computers. PCBs samples were crushed under 1 mm by a shredder and separated into 30% conducting and loft nonconducting materials by an electrostatic separator. The conducting materials contained valuable metals which were then used as feed materials for magnetic separation. 42% of magnetic materials from the conducting materials was removed by magnetic separation as nonvaluable materials and the others, 58% of non magnetic materials, was used as leaching samples containing 0.227 mg/g Au and 0.697 mg/g Ag. Using the materials of leaching from magnetic separation, more than 95% of copper, iron, zinc, nickel and aluminium was dissolved in 2.0M sulfuric acid solution, added with 0.2M hydrogen peroxide at $85^{\circ}C$. Au and Ag were not extracted in this solution. On the other hand, more than 95% of gold and 100% of silver were leached by the selective leaching with a mixed solvent (0.2M($NH_4$)$_2$$S_2$$O_3$,0.02M $CuSO_4$,0.4M $NH_4$OH). Finally, the residues were reacted with a NaCl solution to leach Pb whereas sulfuric acid was used to leach Sn. Recoveries reached 95% and 98% in solution, respectively.

  • PDF

Evaluation of Natural Decay Durability on Valuable Domestic Softwoods by European Standard Test Method (유럽규격 시험방법에 의한 국산 유용 침엽수재의 천연 내후성 평가)

  • Lee, Jong-Shin;Kim, Young-Sook;Kim, Gyu-Hyeok;Kim, Kyung-Tae;Kim, Yoon-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.3
    • /
    • pp.222-228
    • /
    • 2015
  • To evaluate the natural decay durability of valuable domestic softwoods which are used for preservative treatment in our country, we carried out decay test by European standard method. Of all test wood species, Japanese larch (Larix leptolepis) showed slightly high natural decay durability compared to other 4 wood species, Japanese red pine (Pinus densiflora), pitch pine (Pinus rigida), Japanese cedar (Cryptomeria japonica), and scots pine (Pinus sylvestris). However, all of evaluated domestic softwood species in this study caused high weight losses over about 30% in heartwood by test fungus, Poria placenta. We can hardly expect a good natural decay durability from these softwood species. According to the classification of the natural durability of European standard (EN 350-1), they are classified into "Not durable" or "Slightly durable". Therefore, if using these softwoods as exterior materials, we must do preservative treatment to ensure durability.

Recovery of Nitric Acid and Valuable Metals from Spent Nitric Etching Solutions of Printed Circuit Board

  • Ahn, Jae-Woo;Ahn, Jong-Gwan;Lee, Man-Seung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.140-143
    • /
    • 2001
  • A study has been made on the recovery of nitric acid and valuable metals such as Cu, Sn, Pb from the spent nitric etching solutions. The nitric acid was extracted effectively by TBP but the heavy metals such as Fe, Cu, Sn, Pb were not extracted by TBP from the spent nitric etching solutions. From the experimental results, 95% of nitric acid in spent etching solution was extracted at O:A ratio of 3:1 with five stage by 60% TBP and 98% of nitric acid was stripped from the loaded organic phase at O:A ratio of 1:1 with four stages by distilled water. After extracting nitric acid, Cu was recovered as a metal by electrowinning effectively and Sn was successfully removed by precipitation method by adjusting the pH of raffinate solution. Finally, Pb was recovered by cementation with iron scrap at $65^{\circ}C$. Parameters controlling the cementation process, such as temperature, pH and the effect of the additives were investigated.

  • PDF

Efficient Recycling of Printed Circuit Boards from Disassembly/Separation Process of waste LCD TVs: Composition Analysis and Value-wise Classification (LCD TV 해체 시 발생하는 PCB의 효율적 재활용을 위한 구조 분석 및 등급별 분류)

  • Hong, Myung Hwan;Park, Kyung-Soo;Swain, Basudev;Kang, Lee-Seung;Suk, Han Gil;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.66-72
    • /
    • 2015
  • Various waste PCBs arose during disassembly of LCD TVs and monitors in which they originally functioned for transmission of imaging signal, power supply, and imaging control. In those functional PCBs, gold and copper are contained at far more acceptable level, exceeding mining grade ores. Those valuable metals and their contents widely vary with functionality and end use of PCBs. Therefore, compositional analysis of individual waste PCBs from disassembled LCD TVs and monitors were performed in the present study to classify them into three categories: high gold yield and low gold yield PCBs and those without gold contents. Besides, additional chemical analysis was made to reveal gold and copper contents in the waste PCBs arising from actual disassembly/separation of end-of-life LCD TVs and monitors.

Case Studies of Destructive Restoration of the Metal Relics and Their Problems - Derelict restorations by non-conservators and their ignorant use of irreversible materials - (금속문화재 복원의 부적절한 사례 연구 - 비전문가에 의한 금속문화재 복원 및 비가역성 재료를 이용한 잘못된 복원사례 -)

  • Hwang, Jin-Ju;Han, Min-Su
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.63-77
    • /
    • 2009
  • Scientific studies of conservation techniques and materials in Korea have experienced fast development since international practice and academic knowledge have been introduced to Korea from Japan, France, Germany, and etc from the late 1960s. In recent years, it has been observed that the academic standard of research and the level knowledge of the field in Korea at present are far advanced to compete with many countries. However, many Korean cases still have displayed that the standard and the quality of conservation practice need to be improved. This research examined several cases of derelict restoration of metal relics executed by non-conservators and the effects of their ignorant use of irreversible materials on the valuable objects. The purpose of the study is to display the problem of such treatments and to suggest a need of framework to prevent the loss of original form from them. Metal Buddha statue (Cosmic Buddha) in Borim Temple (National Treasure No. 117), which was conserved by an unexperienced non-conservator, has suffered from a serious problem of corrosion because of the use of destructive material, iron chloride. Another case for metal Buddha statue in Dopian Temple (National Treasure No. 63) displays a representative example of using irreversible materials, Cashew and such ignorant application made a later conservation treatment so difficult in removing the material from the surface of the statue. In conclusion, the research argued that the understanding of materials used in the objects, and the value of relics is important, and pre-experiments before applying conservation materials to a valuable heritage are essential in the conservation treatment.

  • PDF

Mineral Processing Characteristics of Titanium Ore Mineral from Myeon-San Layer in Domestic Taebaek Area (국내 태백지역 면산층 타이타늄 광석의 기초 선광 연구)

  • Yang-soo Kim;Fausto Moscoso-Pinto;Jun-hyung Seo;Kye-hong Cho;Jin-sang Cho;Seong-Ho Lee;Hyung-seok Kim
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.54-66
    • /
    • 2023
  • Titanium's importance as a mineral resource is increasing, but the Korean industry depends on imports. Ilmenite is the principal titanium ore. However, research and development from raw materials have not been investigated yet in detail. Hence, measures to secure a stable titanium supply chain are urgently needed. Accordingly, through beneficiation technology, we evaluated the possibility of technological application for the efficient recovery of valuable minerals. As a result of the experiments, we confirmed that mineral particles existed as fine particles due to weathering, making recovery through classification difficult. Consequently, applying beneficiation technologies, i.e., specific gravity separation, magnetic separation, and flotation, makes it possible to recover valuable minerals such as hematite and rutile. However, there are limitations in increasing the quality and yield of TiO2 due to the mineralogical characteristic of the hematite and rutile contained in titanium ore. Hametite is combined with rutile even at fine particles. Therefore, it is essential to develop mineral processing routes, to recover iron, vanadium, and rare earth elements as resources. On that account, we used grinding technology that improves group separation between constituent minerals and magnetic separation technology that utilizes the difference in magnetic sensitivity between fine mineral particles. The development of beneficiation technology that can secure the economic feasibility of valuable materials after reforming iron oxide and titanium oxide components is necessary.

Polymeric Materials for Molecular Recognition

  • Ki, Chang-Do;Lee, Kang-Won;Chang, Ji-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.172-172
    • /
    • 2006
  • Molecular imprinting constitutes a valuable method of preparing polymeric materials with specific binding properties. The most conspicuous merit of molecular imprinting is that structurally three-dimensional recognition sites can be introduced into a polymer matrix with ease and low cost when compared with the complicated process of biological system for antigen and antibody. We used a thermally reversible bond for the preparation of the monomer-template complex, which allowed us to remove the template easily by means of a simple thermal reaction and to simultaneously introduce various functional groups into the cavity. This method is especially propitious for developing artificial receptors for molecules lacking strongly interactive groups.

  • PDF

Foaming Process of Waste LCD Glass for the Recovery of Valuable Materials from Waste LCD Pannel (폐 LCD판넬의 유가성분 회수를 위한 폐 LCD유리의 발포공정)

  • Lee, Chul-Tae;Park, Tae-Moon;Kim, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.195-203
    • /
    • 2012
  • Recycling method of waste LCD glass is the essential process for developing the total recycling process of LCD pannel. Pulverizing of LCD glass, determination of proper carbonacious foaming agent, the properties of residue from the recovery of valuable materials through an acid leaching process and the feasibility for the foaming of the residue obtained from leaching for indium and tin recovery were investigated for the developing of recycling method of waste LCD glass as industrial feed materials, such as heat insulation materials, sound absorbing materials, carrier of water treatment. Waste LCD glass could be pulverized finely for foaming process. Natural graphite was proper agent for foaming of the residue and the foaming technology of LCD glass would be effective recycling alternatives.

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.