• 제목/요약/키워드: vaccine delivery system

검색결과 48건 처리시간 0.024초

Enhanced Antigen Delivery Systems Using Biodegradable PLGA Microspheres for Single Step Immunization

  • Cho, Seong-Wan;Kim, Young-Kwon
    • 대한의생명과학회지
    • /
    • 제12권4호
    • /
    • pp.443-450
    • /
    • 2006
  • To demonstrate their possibilities as an enhanced vaccine delivery system, protein-loaded Poly lactide glycolide copolymer (PLGA) microspheres were prepared with different physical characteristics. Ethyl acetate (EA) solvent extraction process was employed to prepare microspheres and the effects of process parameters on drug release properties were evaluated. The biodeuadability of microspheres was also evaluated by the pH change and GPC (Gel permeation chromatography). Primary IgG antibody responses in BALB/c mice were compared with protein saline solutions as negative controls and adsorbed alum suspensions as positive controls after single subcutaneous injection for in vivo studies. The microspheres showed a erosion with a highly porous structure and did not keep their spherical shape at 45 days and this result could be confirmed by GPC. In vitro release of proteinous drug showed initial burst effect in all batches of microspheres, followed by gradual release over the next 4 weeks. PLGA microspheres were degraded until 45 days and the secondary structure of OVA was not affected by the preparation method. Enzyme-linked immunosorbent assays demonstrated that the single subcutaneous administrations of OVA-loaded PLGA microspheres induced enhanced serum IgG antibody response in comparison to negative and positive controls. These results demonstrated that microspheres providing the controlled release of antigens might be useful in advanced vaccine formulations for the parenteral carrier system.

  • PDF

Cloning and Expression of hpaA Gene of Korean Strain Helicobacter pylori K51 in Oral Vaccine Delivery Vehicle Lactococcus lactis subsp. lactis MG1363

  • Kim Su-Jung;Jun Do-Youn;Yang Chae-Ha;Kim Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.318-324
    • /
    • 2006
  • In order to develop an oral vaccine to prevent H. pylori infection, we have expressed the hpaA gene of H. pylori K51 isolated from Korean patients, encoding 29-kDa HpaA that is known to be localized on the cell surface and flagella sheath, in a live delivery vector system, Lactococcus lactis. The hpaA gene, amplified by PCR using the genomic DNA of H. pylori K51, was cloned in the pGEX-2T vector, and the DNA sequence analysis revealed that the hpaA gene of H. pylori K51 had 99.7% and 94.8% identity with individual hpaA genes of the H. pylori 26695 strain (U.K) and the J99 strain (U.S.A). A polyclonal anti-HpaA antibody was raised in rats using GST-HpaA fusion protein as the antigen. The hpaA gene was inserted in an E. coli-L. lactis-shuttle vector (pMG36e) to express in L. lactis. Western blot analysis showed that the expression level of HpaA in the L. lactis transformant remained constant from the exponential phase to the stationary phase, without extracelluar secretion. These results indicate that the HpaA of H. pylori K51 was successfully expressed in L. lactis, and suggest that the recombinant L. lactis expressing HpaA may be applicable as an oral vaccine to induce a protective immune response against H. pylori.

The threat of Monkeypox in the Philippines: another problematic preparation and management for the healthcare system?

  • Dalmacito A. Cordero Jr.
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권1호
    • /
    • pp.77-79
    • /
    • 2023
  • The Philippines is still in a tight battle with the coronavirus disease 2019 pandemic since many cases are detected daily. With the continuous spread of another disease worldwide-monkeypox, many Filipinos are alarmed if the country's healthcare system is prepared enough, especially with the detection of its first case. Learning from the unfortunate experiences of the country during the current pandemic is essential in facing another health crisis. With this, recommendations for a robust healthcare system are proposed centered on: a massive digital information campaign about the disease; training healthcare workers to raise awareness about the virus and its transmission, management, and treatment; an intensified surveillance and detection procedure to monitor cases and execute contact tracing properly; and a persistent procurement of vaccines and drugs for treatment, with a well-designed vaccination program.

Expression of Cholera Toxin B Subunit and Assembly as Functional Oligomers in Silkworm

  • Gong, Zhao-Hui;Jin, Hui-Qing;Jin, Yong-Feng;Zhang, Yao-Zhou
    • BMB Reports
    • /
    • 제38권6호
    • /
    • pp.717-724
    • /
    • 2005
  • The nontoxic B subunit of cholera toxin (CTB) can significantly increase the ability of proteins to induce immunological tolerance after oral administration, when it was conjugated to various proteins. Recombinant CTB offers great potential for treatment of autoimmune disease. Here we firstly investigated the feasibility of silkworm baculovirus expression vector system for the cost-effective production of CTB under the control of a strong polyhedrin promoter. Higher expression was achieved via introducing the partial non-coding and coding sequences (ATAAAT and ATGCCGAAT) of polyhedrin to the 5' end of the native CTB gene, with the maximal accumulation being approximately 54.4 mg/L of hemolymph. The silkworm bioreactor produced this protein vaccine as the glycoslated pentameric form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB. Further studies revealed that mixing with silkworm-derived CTB increases the tolerogenic potential of insulin. In the nonconjugated form, an insulin : CTB ratio of 100 : 1 was optimal for the prominent reduction in pancreatic islet inflammation. The data presented here demonstrate that the silkworm bioreactor is an ideal production and delivery system for an oral protein vaccine designed to develop immunological tolerance against autoimmune diabetes and CTB functions as an effective mucosal adjuvant for oral tolerance induction.

바이러스 질병 예방을 위한 식물 경구 백신 연구 동향 (Recent Studies of Edible Plant Vaccine for Prophylactic Medicine against Virus-mediated Diseases)

  • 한범수;박종석;김형국;하선화;조강진;김용환;김종범
    • Journal of Plant Biotechnology
    • /
    • 제31권2호
    • /
    • pp.151-161
    • /
    • 2004
  • Transgenic plants have been studied as delivery system for edible vaccine against various diseases. Edible plant vaccines have several potential advantages as follows: an inexpensive source of antigen, easy administration, reduced need for medical personnel, economical to mass produce and easy transport, heat-stable vaccine without refrigerator, generation of systemic and mucosal immunity and safe antigen without fetal animal-virus contaminants. The amount of recombinant antigens in transgenic plants ranged from 0.002 to 0.8% in total soluble protein, depending on promoters for the expression of interested genes and plants to be used for transformation. Throughout the last decade, edible plant vaccine made notable progresses that protect from challenges against virus or bacteria. However edible plant vaccines have still problems that could be solved. First, the strong promoter or inducible promoter or strategy of protein targeting could be solved to improve the low expression of antigens in transgenic plants. Second, the transformation technique of target plant should be developed to be able to eat uncooked. Third, marker-free vector could be constructed to be more safety. In this review we describe advances of edible plant vaccines, focusing on the yields depending on plants/promoters employed and the results of animal/clinical trials, and consider further research for the development of a new plant-derived vaccine.

Microbe-derived extracellular vesicles as a smart drug delivery system

  • Yang, Jinho;Kim, Eun Kyoung;McDowell, Andrea;Kim, Yoon-Keun
    • Translational and Clinical Pharmacology
    • /
    • 제26권3호
    • /
    • pp.103-110
    • /
    • 2018
  • The human microbiome is known to play an essential role in influencing host health. Extracellular vesicles (EVs) have also been reported to act on a variety of signaling pathways, distally transport cellular components such as proteins, lipids, and nucleic acid, and have immunomodulatory effects. Here we shall review the current understanding of the intersectionality of the human microbiome and EVs in the emerging field of microbiota-derived EVs and their pharmacological potential. Microbes secrete several classes of EVs: outer membrane vesicles (OMVs), membrane vesicles (MVs), and apoptotic bodies. EV biogenesis is unique to each cell and regulated by sophisticated signaling pathways. EVs are primarily composed of lipids, proteins, nucleic acids, and recent evidence suggests they may also carry metabolites. These components interact with host cells and control various cellular processes by transferring their constituents. The pharmacological potential of microbiome-derived EVs as vaccine candidates, biomarkers, and a smart drug delivery system is a promising area of future research. Therefore, it is necessary to elucidate in detail the mechanisms of microbiome-derived EV action in host health in a multi-disciplinary manner.

유화법과 분무법에 의해 제조된 경구백신용 알긴산 마이크로스피어의 평가 (Evaluation of Alginate Microspheres Prepared by Emulsion and Spray Method for Oral Vaccine Delivery System)

  • 장혁;지웅길;맹필재;황성주
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권4호
    • /
    • pp.241-256
    • /
    • 2001
  • Alginate microspheres, containing fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) or green fluorescent protein (GFP) were prepared and used as a model drug to develop the oral vaccine delivery system. The alginate microspheres were coated with poly-L-lysine or chitosan. Two methods, w/o-emulsion and spray, were used to prepare alginate microspheres. To optimize preparation conditions, effects of several factors on the particle size and particle morphology of microsphere, and loading efficiency of model antigen were investigated. In both preparation methods, the particle size and the loading efficiency were enhanced when the concentration of sodium alginate increased. In the w/o-emulsion preparation method, as the concentration of Span 80 was increased from 0.5% to 2%, the particle size was decreased, but the loading efficiency was increased. The higher the emulsification speed was, the smaller the particle size and loading efficiency were. The concentration of calcium chloride did not show any effect on the particle size and loading efficiency. In the spray preparation method, the particle size was increased as the nozzle pressure $(from\;1\;kgf/m^2\;to\;3\;kgf/m^2)$ and spray rate was raised. Increasing calcium chloride concentration (<7%) decreased the particle size, in contrast to no effect of calcium chloride concentration on the w/o-emulsion preparation method. Alginate microspheres prepared by two methods were different in the particle size and loading efficiency, the particle size of microspheres prepared by the spray method was about $2-6\;{\mu}m$, larger than that prepared by the w/o emulsion method $(about\;2{\mu}m)$, and the loading efficiency was also higher with spray method. Furthermore, drying process for the microspheres prepared by the spray was simpler and easier, compared with the w/o emulsion preparation. Therefore, the spray method was chosen to prepare alginate microspheres for further experiments. Release pattern of FITC-BSA in alginate microspheres was evaluated in simulated intestinal fluid and PBS (phosphate buffered saline). Dissolution rate of FITC-BSA from alginate/chitosan microsphere was lower than that from alginate microsphere and alginate/poly-L-lysine microsphere. By confocal laser scanning microscope, it was revealed that alginate/FITC-poly-L-lysine microspheres were present in close apposition epithelium of the Peyer's patches of rabbits following inoculation into lumen of intestine, which proved that microspheres could be taken up by Peyer's patch. In conclusion, it is suggested that alginate microsphere prepared by spray method, showing a particle size of & $10\;{\mu}m$ and a high loading efficiency, can be used as a model drug for the development of oral vaccine delivery system.

  • PDF

경구백신의 효율적인 적용을 위한 면역 보조제 개발 (Development of adjuvant for effective oral vaccine application)

  • 김새해;서기원;김주;장용석
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.283-291
    • /
    • 2010
  • Vaccine is one of the best known and most successful applications of immunological theory to human health and it protects human life through inducing the immune response in systemic compartment. However, when we consider the fact that mucosal epithelium is exposed to diverse foreign materials including viruses, bacteria, and food antigens and protects body from entry of unwanted materials using layer of tightly joined epithelial cells, establishing the immunological barrier on the lining of mucosal surfaces is believed to be an effective strategy to protect body from unwanted antigens. Unfortunately, however, oral mucosal site, which is considered as the best target to induce mucosal immune response due to application convenience, is prone to induce immune tolerance rather than immune stimulation. Since intestinal epithelium is tightly organized, a prerequisite for successful mucosal vaccination is delivery of antigen to mucosal immune induction site including a complex system of highly specialized cells such as M cells. Consequently, development of efficient mucosal adjuvant capable of introducing antigens to mucosal immune induction site and overcome oral tolerance is an important subject in oral vaccine development. In this review, various approaches on the development of oral mucosal adjuvants being suggested for effective oral mucosal immune induction.

돼지에서 생체 분해 금속성 전달체를 활용한 구제역 백신의 적용 연구 (Application of biodegradable metal based drug delivery carrier on Foot and Mouth Disease vaccination in pigs)

  • 조아라;오상익;최창용;정영훈;도윤정;김수희;추현욱;구종수;정우진;조성윤;류재규
    • 한국동물위생학회지
    • /
    • 제43권3호
    • /
    • pp.129-137
    • /
    • 2020
  • In this study, we applied biodegradable drug delivery carries (BDDC) for food-and-mouth (FMD) vaccination. After FMD vaccination using BDDC, we estimated the percentage inhibition (PI) of antibody, decomposed patterns, and histopathologic features of BDDC. PI of antibody was higher than 50 at two weeks after injection and sustained positive PI until 10 weeks after injection. BBDC injection group showed significantly an increased pattern of blood monocyte at two and three weeks after injection. According to the Micro CT, micro-cracks were observed at two weeks after injection and the morphology of BDDC was lost at four weeks after injection. For histopathological examination, acute inflammation with neutrophil infiltration and micro-metallic residues were observed around BDDC until four weeks after injection and inflammatory responses gradually decreased at 10 weeks. Based on our experiment, BDDC is considered as an alternative way to vaccine injection for veterinary applications. Our study can be used as basic data for the drug delivery system using biodegradable metals in the future.

Construction of nervous necrosis virus (NNV) genome-based DNA replicon vectors for the delivery of foreign antigens

  • Jeong In Yang;Ki Hong Kim
    • 한국어병학회지
    • /
    • 제37권1호
    • /
    • pp.1-8
    • /
    • 2024
  • The advantages of replicon vectors of RNA viruses include a high ability to stimulate innate immunity and exponential amplification of target mRNA leading to high expression of foreign antigens. The present study aimed to construct a DNA-layered nervous necrosis virus (NNV) replicon vector system in which the capsid protein gene was replaced with a foreign antigen gene and to compare the efficiency of foreign antigen expression between the conventional DNA vaccine vector and the present replicon vector. We presented the first report of a nodavirus DNA replicon-based foreign antigen expression system. Instead of a two-vector system, we devised a one-vector system containing both an NNV RNA-dependent RNA polymerase cassette and a foreign antigen-expressing cassette. This single-vector approach circumvents the issue of low foreign protein expression associated with the low co-transfection efficiency of a two-vector system. Cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 (with the capsid gene ORF replaced with VHSV glycoprotein ORF) exhibited significantly higher transcription of the VHSV glycoprotein gene compared to cells transfected with either a vector without hammerhead ribozyme or a conventional DNA vaccine vector expressing the VHSV glycoprotein. Furthermore, the transcription level of the VHSV glycoprotein in cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 showed a significant increase over time. These results suggest that NNV genome-based DNA replicon vectors have the potential to induce stronger and longer expression of target antigens compared to conventional DNA vaccine vectors.