• Title/Summary/Keyword: utility-connected

Search Result 198, Processing Time 0.025 seconds

A BIFUNCTIONAL UTILITY CONNECTED PHOTOVOLTAIC SYSTEM WITH POWER FACTOR CORRECTION AND U.P.S. FACILITY

  • Kim. S.;Yoo, Gwonjong;Song, Jinsoo
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.103-108
    • /
    • 1996
  • In this paper, a novel utility connected photovoltaic power generation system with unity power factor and uninterruptable power system facility and its control strategy are proposed. The proposed photovoltaic(PV) system is connected in parallel between utility and load. The PV system provides an uninterruptable voltage to load, a maximum power tracking to solar array, and power factor correction to the utility. The proposed system has the following advantages compared with the conventional utility connected PV system. 1. Harmonic elimination Function 2. Feeding the photovoltaic energy to the utility 3. Providing the uninterruptible power source along battery to the load In case that the photovoltaic array system is on the poor power generation, the battery and capacitor of the PV system are charged by three phase utility source and the inverter in the PV system only provides the reactive current to eliminate the harmonic current exited on the utility. In the normal operation mode, the PV system supplies active power to load and reactive power to utility in order to maintain the unity power factor and to regulate ac load voltage.

  • PDF

Digital PLL Control for Phase-Synchronization of Grid-Connected PV System (계통 연계형 태양광 발전 시스템의 위상 동기화를 위한 디지털 PLL 제어)

  • 김용균;최종우;김흥근
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.562-568
    • /
    • 2004
  • The frequency and phase angle of the utility voltage are important in many industrial systems. In the three-phase system, they can be easily known by using the utility voltage vector. However, in the case of single phase system, there are some difficulties in detecting the information of utility voltage. In conventional system, the zero-crossing detection method is widely used, but could not obtain the information of utility voltage instantaneously. In this paper, the new digital PLL control using virtual two phase detector is proposed with a detailed analysis of single-phase digital PLL control for utility connected systems. The experimental results under various utility conditions are presented and demonstrate an excellent phase tracking capability in the single-phase grid-connected operation.

Digital Control of Utility-Connected PV Inverter (계통 연계형 태양광 발전 인버터의 디지털 제어)

  • Kim Yong-Kyun;Chol Jong-Woo;Kim Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1161-1165
    • /
    • 2004
  • The fundamental digital control of utility-connected PV inverter are presented with detailed analysis and simulation and experimental results. PLL controller using virtual two phase detector, current controller of DC-DC converter, dc link voltage controller and inverter current controller are discussed. The novel PLL controller using virtual two phase detector can detect the information of utility voltage instantaneously and is not sensitive to the noise. Current controller of DC-DC converter, dc link voltage controller and inverter current controller are the conventional methods. We have constructed utility-Connected PV Inverter and applied to those controllers. The simulation and experimental results demonstrate an excellent performance in the single-phase grid-connected operation.

  • PDF

Islanding Detection for PV System Connected to a Utility Grid

  • Han, Seok-Woo;Mok, Hyung-Soo;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.719-723
    • /
    • 1998
  • Prevention of the islanding phenomena is one of the most important issues because it can damage electrical equipment connected to the utility system and endanger human life. It is very difficult to detect an islanding condition of a power distribution line with conventional voltage of frequency relays, while the output power and the load power of utility interactive PV inverter units are in nearly balanced state in both active power and reactive power. This paper describes the protective equipment that prevents the PV system connected to the utility grid from starting islanding. Both predictive ocntrol method and harmonic injection method are used for a current control and islanding detection for operating safety.

  • PDF

A Study of Non-Detection Zone using AFD Method applied to Grid-Connected Photovoltaic Inverter for a variety of Loads (계통연계형 태양광발전 인버터에 사용된 AFD기법의 다양한 부하에 따른 단독운전 불검출영역에 대한 고찰)

  • Ko, Moon-Ju;Choy, Ick;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.91-98
    • /
    • 2006
  • Islanding phenomenon of utility-connected photovoltaic power conditioning systems(PV PCS) can cause a variety of problems and must be prevented. If the real and reactive power supplied by PV PCS are closely matched to those of load, islanding detection by passive methods becomes difficult. The active frequency drift(AFD) method, called the frequency bias method, enables islanding detection by forcing the frequency of the voltage in the islanding to drift up or down. In this paper, non-detection zone(NDZ) of AFD is analyzed for the islanding detection method of utility-connected PV PCS by the simulation software tool PSIM.

The Analysis of Characteristics for Digital PLL Control (디지털 PLL 제어의 특성 분석)

  • Kim Y.K.;Choi J.W.;Kim H.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.548-553
    • /
    • 2003
  • The frequency and phase angle of the utility voltage are important in many industrial systems. this paper present a detailed analysis of single-phase digital PLL control for utility connected systems. and its performance under utility conditions with noise is discussed. The experimental results demonstrate phase tracking capability in the single-phase grid-connected operation.

  • PDF

Controller Design of Utility-connected Single-phase Inverter using d-q Theory (d-q이론을 이용한 개통 연계형 단상 인버터 제어기 설계기법)

  • Park, Chang-Joo;Kim, Chang-Hyun;Kim, Myung-Chul;Choi, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1247-1249
    • /
    • 2003
  • Despite many advantages, d-q theory was available only for three phase system. But recently, some papers proposed the application methods of d-a theory or similar theories for single phase systems. This paper presents the control method of the utility-connected single-phase inverter using d-q theory. The suggested method gives single-phase system instantaneous controllability and also makes the realization of APF(Active Power Filter) without DFT operation and PFC(Power Factor Controller) possible. This paper deals with utility-connected single phase inverter with PFC function. The controller was verified by simulation tool.

  • PDF

Simulation of Non-Detection Zone using AFD Method applied to Utility-Connected Photovoltaic Systems for a Variety of Loads (다양한 부하에 따른 계통연계형 태양광발전 시스템에 적용된 AFD 기법의 단독운전 불검출영역 시뮬레이션)

  • Ko, Moon-Ju;Choy, Ick;Choi, Ju-Yeop;Won, Young-Jin
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.63-69
    • /
    • 2006
  • Islanding phenomenon of utility-connected PV power conditioning systems(PV PCS) can cause a variety of problems and must be prevented. If the real and reactive powers supplied by PV PCS are closely matched to those of load, islanding detection by passive methods becomes difficult. The active frequency drift(AFD) method, called the frequency bias method, enables islanding detection by forcing the frequency of the voltage in the islanding to drift up or down. In this paper, non-detection zone(NDZ) of AFD is analyzed for the islanding detection method of utility-connected PV PCS by simulation tool PSIM.

New Multi-pulse Rectifier Systems Using An Open-Delta Auto-Connected Transformer (개방-델타 단권선 변압기를 이용한 새로운 다중 펄스 정류기 시스템)

  • Gang, Mun-Sik;U, Byeong-Ok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.278-285
    • /
    • 1999
  • This paper proposes new 12 and 24-pulse rectifier systems using an open-delta auto-connected transformer. This approach employs two static converters to operate it at higher than utility line frequencies and to provide multi-pulse operation. By operating magnetic components at a higher frequency, higher power density can be achieved. A unique feature of the proposed approach is that the magnetic components for the dc-side are also exposed to a higher frequency and these components too are reduced in size. The switching frequency and its harmonic components are absent in the utility input line current. The VA ratings of the transformer and static converter are 0.236/0.292 [pu] and 0.11/0.18 [pu] in 12 and 24-pulse rectifier system, respectively. A finer grade of steel or alternatives can be deployed to increase performance and reduce size further. Analysis, simulations, simulations, design example, and experimental results for a 480[V], 10{kVA] prototype system are presented.

  • PDF

Power Sharing Method for a Grid connected Microgrid with Multiple Distributed Generators

  • Nguyen, Khanh-Loc;Won, Dong-Jun;Ahn, Seon-Ju;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.459-467
    • /
    • 2012
  • In this paper, a grid connected microgrid with multiple inverter-based distributed generators (DGs) is considered. DG in FFC mode regulates the microgrid as a controllable load from the utility point of view as long as its output is within the capacity limit. The transition mode causes a change in frequency of microgrid due to the loss of power transferred between main grid and microgrid. Frequency deviation from the nominal value can exceed the limit if the loss of power is large enough. This paper presents a coordinated control method for inverter-based DGs so that the microgrid is always regulated as a constant load from the utility viewpoint during grid connected mode, and the frequency deviation in the transition mode is minimized. DGs can share the load by changing their control modes between UPC and FFC and stabilize microgrid during transition.