Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2005.11b
/
pp.144-147
/
2005
The tire is considered as one of the Important noise sources having an influence on vehicle's performance. The Pattern noise of a tire is the transmission sound of airborne noise. On smooth asphalt road, Pattern noise is amplified with the velocity. In recent, the study on the reduction of Pattern noise is energetically processed. Pattern noise is strongly related with pitch sequence. To reduce the pattern noise, tire's designer has to randomize the sequence of pitch. The FFT is a traditional method to evaluate the level of the randomization of the pitch sequence, but gives no information on time-varying, instantaneous frequency. In the study, we found that Time-Frequency transform is a useful method to non-stationary signal such as tire noise.
Presently, 3D printers manufactured by material extrusion are economical and easy to use, so they are being used in various fields. However, this study conducted a tensile test on the infill pattern and density of the PLA+ material, due to the limitations of long printing time as well as low mechanical strength. The infill area for the infill density change was measured, using a vision-measuring machine for four infill patterns (concentric, zigzag, honeycomb, and cross) in which the nozzle path was the same for each layer. The tensile strength/weight[MPa/g] and tensile strength/printing time[MPa/min] of the tensile specimens were analyzed. In this study, efficient infill density and patterns are suggested, for cost reduction and productivity improvement. Consequently, it was confirmed that the infill area and infill percentage of the four patterns, were not constant according to the infill pattern. And the tensile strength of the infill density 40% of the honeycomb pattern and infill density 20% of the cross pattern, tended to highly consider the weight and printing time. Honeycomb and cross patterns could reduce the weight of the tensile specimen by 19.11%, 28.07%, as well as the printing time by 29.56%, 52.25%. Tensile strength was high in the order of concentric, zigzag, honeycomb, and cross patterns, considering the weight and printing time.
When a customer wants to buy an item at the Internet shopping mall, one of the difficulties is to decide when to buy the item because its price changes over time. If the shopping mall can be able to recommend appropriate buying points, it will be greatly helpful for the customer. Therefore, in this presentation, we propose a method to recommend buying points based on the time series analysis using a database that contains past prices data of items. The procedure to provide buying points for an item is as follows. First, we search past time series patterns from the database using normalized similarity, which are similar to the current time series pattern of the item. Second, we analyze the retrieved past patterns and predict the future price pattern of the item. Third, using the future price pattern, we recommend when to buy the item.
Purpose The purpose of this study is to explore the optimal trading frequency which is useful for stock price prediction by using deep learning for charting image data. We also want to identify the appropriate time for accurate forecasting of stock price when performing pattern analysis. Design/methodology/approach In order to find the optimal trading frequency patterns and forecast timings, this study is performed as follows. First, stock price data is collected using OpenAPI provided by Daishin Securities, and candle chart images are created by data frequency and forecasting time. Second, the patterns are generated by the charting images and the learning is performed using the CNN. Finally, we find the optimal trading frequency patterns and forecasting timings. Findings According to the experiment results, this study confirmed that when the 10 minute frequency data is judged to be a decline pattern at previous 1 tick, the accuracy of predicting the market frequency pattern at which the market decreasing is 76%, which is determined by the optimal frequency pattern. In addition, we confirmed that forecasting of the sales frequency pattern at previous 1 tick shows higher accuracy than previous 2 tick and 3 tick.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.15
no.2
/
pp.121-125
/
2015
In this paper, we propose a method that extracts features from character patterns using the fractal dimension of chaos theory. The input character pattern image is converted into time-series data. Then, using the modified Henon system suggested in this paper, it determines the last features of the character pattern image after calculating the box-counting dimension, natural measure, information bit, and information (fractal) dimension. Finally, character pattern recognition is performed by statistically finding each information bit that shows the minimum difference compared with a normalized character pattern database.
JSTS:Journal of Semiconductor Technology and Science
/
v.17
no.1
/
pp.147-155
/
2017
A new endurance test-pattern generation on NAND-flash memory is proposed to improve test cost. We mainly focus on the correlation between the data-pattern and the device error-rate during endurance testing. The novelty is the development of testing method using quasi-random pattern based on device architectures in order to increase the test efficiency during time-consuming endurance testing. It has been proven by the experiments using the commercial 32 nm NAND flash-memory. Using the proposed method, the error-rate increases up to 18.6% compared to that of the conventional method which uses pseudo-random pattern. Endurance testing time using the proposed quasi-random pattern is faster than that of using the conventional pseudo-random pattern since it is possible to reach the target error rate quickly using the proposed one. Accordingly, the proposed method provides more low-cost testing solutions compared to the previous pseudo-random testing patterns.
The Transactions of The Korean Institute of Electrical Engineers
/
v.65
no.12
/
pp.2094-2102
/
2016
In this paper, we propose an extended Kalman filter(EKF)-based simultaneous localization and mapping(SLAM) method using laser corner pattern matching for mobile robots. SLAM is one of the most important problems of mobile robot. However, existing method has the disadvantage of increasing the computation time, depending on the number of landmarks. To improve computation time, we produce the corner pattern using classified and detected corner points. After producing the corner patterns, it is estimated that mobile robot's global position by matching them. The estimated position is used as measurement model in the EKF. To evaluated proposed method, we preformed the experiments in the indoor environments. Experimental results of proposed method are shown to maintain an accuracy and decrease the computation time.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1996.10a
/
pp.294-297
/
1996
This paper proposes the method to recognize of time series data based on the chaotic feature extraction. Features extract from time series data using the chaotic time series data analysis and the pattern recognition process is using a neural network classifier. In experiment, EEG(electroencephalograph) signals are extracted features by correlation dimension and Lyapunov experiments, and these features are classified by multilayer perceptron neural networks. Proposed chaotic feature extraction enhances recognition results from chaotic time series data.
Suh, Young Ju;Cho, Sun A;Shim, Jung Hee;Yook, Yeon Joo;Yoo, Kyung Hyun;Kim, Jung Hee;Park, Eun Young;Noh, Ji Yeun;Lee, Seong Ho;Yang, Moon Hee;Jeong, Hyo Seok;Park, Jong Hoon
Molecules and Cells
/
v.26
no.4
/
pp.338-343
/
2008
An embryonic stem cell is a powerful tool for investigation of early development in vitro. The study of embryonic stem cell mediated neuronal differentiation allows for improved understanding of the mechanisms involved in embryonic neuronal development. We investigated expression profile changes using time course cDNA microarray to identify clues for the signaling network of neuronal differentiation. For the short time course microarray data, pattern analysis based on the quadratic regression method is an effective approach for identification and classification of a variety of expressed genes that have biological relevance. We studied the expression patterns, at each of 5 stages, after neuronal induction at the mRNA level of embryonic stem cells using the quadratic regression method for pattern analysis. As a result, a total of 316 genes (3.1%) including 166 (1.7%) informative genes in 8 possible expression patterns were identified by pattern analysis. Among the selected genes associated with neurological system, all three genes showing linearly increasing pattern over time, and one gene showing decreasing pattern over time, were verified by RT-PCR. Therefore, an increase in gene expression over time, in a linear pattern, may be associated with embryonic development. The genes: Tcfap2c, Ttr, Wnt3a, Btg2 and Foxk1 detected by pattern analysis, and verified by RT-PCR simultaneously, may be candidate markers associated with the development of the nervous system. Our study shows that pattern analysis, using the quadratic regression method, is very useful for investigation of time course cDNA microarray data. The pattern analysis used in this study has biological significance for the study of embryonic stem cells.
Journal of the Korean Society for Precision Engineering
/
v.15
no.6
/
pp.167-174
/
1998
The ultrasonic test is recognized for its significance as a non-destructive testing method to detect volume defects such as porosity and incomplete penetration which reduce strength in the weld zone. This paper illustrates the defect detection in the weld zone of ferritic carbon steel using ultrasonic wave and the evaluation of pattern recognition by chaotic feature extraction using time series signal of detected defects as data. Shown in the time series data were that the time delay was 4 and the embedding dimension was 6 which indicate the geometric dimension of the subject system and the extent of information correlation. Based on fractal dimension and lyapunov exponent in quantitative chaotic feature extraction, feature value of 2.15, 0.47 is presented for porosity and 2.24, 0.51 for incomplete penetration The precision rate of the pattern recognition is enhanced with these values on the total waveform of defect signal in the weld zone. Therefore, we think that the ultrasonic pattern recognition method of weld zone defects of ferritic carbon steel by ultrasonic-chaotic feature extraction proposed in this paper can boost precision rate further than the existing method applying only partial waveform.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.