• Title/Summary/Keyword: using

Search Result 449,879, Processing Time 0.192 seconds

Exact Modeling and Performance Analysis of Paging Schemes Using Paging Agents (페이징 에이전트를 이용한 페이징 방법의 정확한 모델링 및 성능 분석)

  • Moon, Yu-Ri;Lee, Tae-Han;Baek, Jang-Hyun
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • This study considers paging schemes that can page some cells or only one cell within the location area to reduce paging cost by using PAs (Paging Agents) and compares their performances by using a new analytic method. There are three ways of paging schemes using PAs; BSPA (Base Staton Paging Agent), 2SPA (2-Step Paging Agent), LAPA (Location Area Paging Agent). This study proposes exact performance of BSPA and 2SPA using a new analytic method based on Markov chain modeling to find the most efficient paging scheme. Numerical results for various circumstances are presented by using proposed analytic method to select a proper paging scheme in mobile communication networks.

Reducing Noise Source Harmonics of the Next-Generation High-Speed Railway Inverter System Using Hybrid RPWM Technique (Hybrid RPWM을 적용한 IPMSM 기반 차세대 고속전철 인버터 구동 시스템의 소음원 고조파 저감)

  • Lee, Sang-Hyun;Jin, Kang-Hwan;Kim, Sung-Je;Park, Young-Ho;Kim, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1061-1068
    • /
    • 2012
  • In this paper, The Next Generation High Speed Railway inverter system using Hybrid Random Pulse Width Modulation (Hybrid RPWM) is proposed to reduce electromagnetic noise. To verify the validity of study, simulation results of the Next Generation High Speed Railway Inverter system using the proposed method was compared with the system using conventional method. A simulation program is developed using Matlab/Simulink. The results show that the voltage and current harmonics of the Next Generation High Speed Railway Inverter system using Hybrid RPWM significantly decrease and spread into wide band area.

Application for Measuring the Glucose, Ammonia nitrogen, and Tylosin Concentration using Near Infrared Spectroscopy

  • Kim, Jong-Soo;Cho, Hoon
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.2
    • /
    • pp.19-25
    • /
    • 2008
  • For measurement of tylosin, ammonia nitrogen, and glucose concentration during the culture of Streptomyces fradiae using Near Infrared Spectroscopy, the calibration using various mathematical models was performed and then, based on the linear model, the validation was carried out. In the case of sucrose concentration using the MLR method, the Standard Error of Prediction and Multiple correlation coefficient were 1.97, and 0.991, respectively. In the case of ammonia nitrogen concentration using the PLSR method, the Standard Error of Prediction and Multiple correlation coefficient were 0.13, and 0.990, respectively. In the case of tylosin concentration using the PLSR method, the standard Error of Prediction and Multiple correlation coefficient were 0.54, and 0.984, respectively.

Contrast Enhancement using Histogram Equalization with a New Neighborhood Metrics

  • Sengee, Nyamlkhagva;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.737-745
    • /
    • 2008
  • In this paper, a novel neighborhood metric of histogram equalization (HE) algorithm for contrast enhancement is presented. We present a refinement of HE using neighborhood metrics with a general framework which orders pixels based on a sequence of sorting functions which uses both global and local information to remap the image greylevels. We tested a novel sorting key with the suggestion of using the original image greylevel as the primary key and a novel neighborhood distinction metric as the secondary key, and compared HE using proposed distinction metric and other HE methods such as global histogram equalization (GHE), HE using voting metric and HE using contrast difference metric. We found that our method can preserve advantages of other metrics, while reducing drawbacks of them and avoiding undesirable over-enhancement that can occur with local histogram equalization (LHE) and other methods.

  • PDF

A Recommendation System using Dynamic Profiles and Relative Quantification

  • Lee, Se-Il;Lee, Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.165-170
    • /
    • 2007
  • Recommendation systems provide users with proper services using context information being input from many sensors occasionally under ubiquitous computing environment. But in case there isn't sufficient context information for service recommendation in spite of much context information, there can be problems of resulting in inexact result. In addition, in the quantification step to use context information, there are problems of classifying context information inexactly because of using an absolute classification course. In this paper, we solved the problem of lack of necessary context information for service recommendation by using dynamic profile information. We also improved the problem of absolute classification by using a relative classification of context information in quantification step. As the result of experiments, expectation preference degree was improved by 7.5% as compared with collaborative filtering methods using an absolute quantification method where context information of P2P mobile agent is used.

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

Digital Elevation Model Extraction Using KOMPSAT Images

  • Im, Hyung-Deuk;Ye, Chul-Soo;Lee, Kwae-Hi
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.347-353
    • /
    • 2000
  • The purpose of this paper is to extract DEM (Digital Elevation Model) using KOMPSAT images. DEM extraction consists of three parts. First part is the modeling of satellite position and attitude, second part is the matching of two images to find corresponding points of them and third part is to calculate the elevation of each point by using the result of the first and second part. The position and attitude modeling of satellite is processed by using GCPs. Area based matching method is used to find the corresponding points between the stereo satellite images. The elevation of each point is calculated using the exterior orientation information obtained from sensor modeling and the disparity from the stereo matching. In experiment, the KOMPSAT images, 2592$\times$2796 panchromatic images are used to extract DEM. The experiment result show the DEM using KOMPSAT images.

Application of Variable Selection for Prediction of Target Concentration

  • 김선우;김연주;김종원;윤길원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.525-527
    • /
    • 1999
  • Many types of chemical data tend to be characterized by many measured variables on each of a few observations. In this situation, target concentration can be predicted using multivariate statistical modeling. However, it is necessary to use a few variables considering size and cost of instrumentation, for an example, for development of a portable biomedical instrument. This study presents, with a spectral data set of total hemoglobin in whole blood, the possibility that modeling using only a few variables can improve predictability compared to modeling using all of the variables. Predictability from the model using three wavelengths selected from all possible regression method was improved, compared to the model using whole spectra (whole spectra: SEP = 0.4 g/dL, 3-wavelengths: SEP=0.3 g/dL). It appears that the proper selection of variables can be more effective than using whole spectra for determining the hemoglobin concentration in whole blood.

Development of Odor Sensor Array using Pattern Classification Technology (패턴분류 기술을 이용한 후각센서 어레이 개발)

  • Park, Tae-Won;Lee, Jin-Ho;Cho, Young-Chung;Ahn, Chul
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.454-459
    • /
    • 2006
  • There are two main streams for pattern classification technology One is the method using PCA (Principal Component Analysis) and the other is the method using Neural network. Both of them have merits and demerits. In general, using PCA is so simple while using neural network can improve algorithm continually. Algorithm using neural network needs so many calculations rendering very slow response. In this work, an attempt is made to develop algorithms adopting both PCA and neural network merits for simpler, but faster and smarter.

  • PDF

Retrieval Method using Device Characteristics and Device Usage Characteristics in Multi-Device Environment (다중 기기 환경에서 기기 특성과 기기 사용 특성을 활용한 검색 기법)

  • Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.3
    • /
    • pp.17-26
    • /
    • 2021
  • Internet of Things is an infrastructure of the interconnected devices. In Internet of Things environment, many smart devices are used in daily life. It requires a new retrieval method using multiple devices. We propose an information retrieval method using both device characteristics and device usage characteristics in multi-device environments. Firstly, information retrieval is performed using a general purpose device. And then, it is performed using dedicated devices. Our method uses both characteristics of the devices and usage characteristics of them. Moreover, it considers queries on the general purpose device. This paper proposes a new retrieval method and describes algorithms. Then, it presents smart home scenarios. Performance evaluation is performed using the scenarios. The evaluation results show higher precision and efficiency than previous researches. The proposed method gets information more accurately and quickly in IOT multiple device environments.